• Title/Summary/Keyword: uniqueness theorem

Search Result 137, Processing Time 0.02 seconds

SECOND MAIN THEOREM WITH WEIGHTED COUNTING FUNCTIONS AND UNIQUENESS THEOREM

  • Yang, Liu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1105-1117
    • /
    • 2022
  • In this paper, we obtain a second main theorem for holomorphic curves and moving hyperplanes of Pn(C) where the counting functions are truncated multiplicity and have different weights. As its application, we prove a uniqueness theorem for holomorphic curves of finite growth index sharing moving hyperplanes with different multiple values.

UNIQUENESS OF SOLUTION FOR IMPULSIVE FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION

  • Singhal, Sandeep;Uduman, Pattani Samsudeen Sehik
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.171-177
    • /
    • 2018
  • In this research paper considering a differential equation with impulsive effect and dependent delay and applied Banach fixed point theorem using the impulsive condition to the impulsive fractional functional differential equation of an order ${\alpha}{\in}(1,2)$ to get an uniqueness solution. At last, theorem is verified by using a numerical example to illustrate the uniqueness solution.

A General Uniqueness Theorem concerning the Stability of AQCQ Type Functional Equations

  • Lee, Yang-Hi;Jung, Soon-Mo
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.291-305
    • /
    • 2018
  • In this paper, we prove a general uniqueness theorem which is useful for proving the uniqueness of the relevant additive mapping, quadratic mapping, cubic mapping, quartic mapping, or the additive-quadratic-cubic-quartic mapping when we investigate the (generalized) Hyers-Ulam stability.

Lp SOLUTIONS FOR GENERAL TIME INTERVAL MULTIDIMENSIONAL BSDES WITH WEAK MONOTONICITY AND GENERAL GROWTH GENERATORS

  • Dong, Yongpeng;Fan, Shengjun
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.985-999
    • /
    • 2018
  • This paper is devoted to the existence and uniqueness of $L^p$ (p > 1) solutions for general time interval multidimensional backward stochastic differential equations (BSDEs for short), where the generator g satisfies a ($p{\wedge}2$)-order weak monotonicity condition in y and a Lipschitz continuity condition in z, both non-uniformly in t. The corresponding stability theorem and comparison theorem are also proved.

TOWARDS UNIQUENESS OF MPR, THE MALVENUTO-POITIER-REUTENAUER HOPF ALGEBRA OF PERMUTATIONS

  • Hazewinkel, Michiel
    • Honam Mathematical Journal
    • /
    • v.29 no.2
    • /
    • pp.119-192
    • /
    • 2007
  • A very important Hopf algebra is the graded Hopf algebra Symm of symmetric functions. It can be characterized as the unique graded positive selfdual Hopf algebra with orthonormal graded distinguished basis and just one primitive element from the distinguished basis. This result is due to Andrei Zelevinsky. A noncommutative graded Hopf algebra of this type cannot exist. But there is a most important positive graded Hopf algebra with distinguished basis that is noncommutative and that is twisted selfdual, the Malvenuto-Poirier-Reutenauer Hopf algebra of permutations. Thus the question arises whether there is a corresponding uniqueness theorem for MPR. This prepreprint records initial investigations in this direction and proves that uniquenees holds up to and including the degree 4 which has rank 24.

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SINGULAR SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Wang, Lin;Lu, Xinyi
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.877-894
    • /
    • 2013
  • In this paper, we study the existence and uniqueness of solutions for a singular system of nonlinear fractional differential equations with integral boundary conditions. We obtain existence and uniqueness results of solutions by using the properties of the Green's function, a nonlinear alternative of Leray-Schauder type, Guo-Krasnoselskii's fixed point theorem in a cone. Some examples are included to show the applicability of our results.

ON THE MULTIPLE VALUES AND UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING SMALL FUNCTIONS AS TARGETS

  • Cao, Ting-Bin;Yi, Hong-Xun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.631-640
    • /
    • 2007
  • The purpose of this article is to deal with the multiple values and uniqueness of meromorphic functions with small functions in the whole complex plane. We obtain a more general theorem which improves and extends strongly the results of R. Nevanlinna, Li-Qiao, Yao, Yi, and Thai-Tan.