• Title/Summary/Keyword: unilateral model

Search Result 143, Processing Time 0.024 seconds

A damage model formulation: unilateral effect and RC structures analysis

  • Pituba, Jose J.C.
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.709-733
    • /
    • 2015
  • This work deals with a damage model formulation taking into account the unilateral effect of the mechanical behaviour of brittle materials such as concrete. The material is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity induced by damage evolution. Two damage tensors governing the stiffness in tension or compression regimes are introduced. A new damage tensor in tension regimes is proposed in order to model the diffuse damage originated in prevails compression regimes. Accordingly with micromechanical theory, the constitutive model is validate when dealing with unilateral effect of brittle materials, Finally, the proposed model is applied in the analyses of reinforced concrete framed structures submitted to reversal loading. The numerical results have shown the good performance of the modelling and its potentialities to simulate practical problems in structural engineering.

Modeling of unilateral effect in brittle materials by a mesoscopic scale approach

  • Pituba, Jose J.C.;Neto, Eduardo A. Souza
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.735-758
    • /
    • 2015
  • This work deals with unilateral effect of quasi-brittle materials, such as concrete. For this propose, a two-dimensional meso-scale model is presented. The material is considered as a three-phase material consisting of interface zone, matrix and inclusions - each constituent modeled by an appropriate constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes randomly placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements developed here in order to capture the effects of phase debonding and interface crack closure/opening. As an initial approximation, the inclusion is modeled as linear elastic as well as the matrix. Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a finite element procedure within a purely kinematical multi-scale framework. A set of numerical examples, involving the microcracking processes, is provided. It illustrates the performance of the proposed model. In summary, the proposed homogenization-based model is found to be a suitable tool for the identification of macroscopic mechanical behavior of quasi-brittle materials dealing with unilateral effect.

Impaired Voluntary Wheel Running Behavior in the Unilateral 6-Hydroxydopamine Rat Model of Parkinson's Disease

  • Pan, Qi;Zhang, Wangming;Wang, Jinyan;Luo, Fei;Chang, Jingyu;Xu, Ruxiang
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.2
    • /
    • pp.82-87
    • /
    • 2015
  • Objective : The aim of this study was to investigate voluntary wheel running behavior in the unilateral 6-hydroxydopamine (6-OHDA) rat model. Methods : Male Sprague-Dawley rats were assigned to 2 groups : 6-OHDA group (n=17) and control group (n=8). The unilateral 6-OHDA rat model was induced by injection of 6-OHDA into unilateral medial forebrain bundle using a stereotaxic instrument. Voluntary wheel running activity was assessed per day in successfully lesioned rats (n=10) and control rats. Each behavioral test lasted an hour. The following parameters were investigated during behavioral tests : the number of running bouts, the distance moved in the wheel, average peak speed in running bouts and average duration from the running start to the peak speed. Results : The number of running bouts and the distance moved in the wheel were significantly decreased in successfully lesioned rats compared with control rats. In addition, average peak speed in running bouts was decreased, and average duration from the running start to the peak speed was increased in lesioned animals, which might indicate motor deficits in these rats. These behavioral changes were still observed 42 days after lesion. Conclusion : Voluntary wheel running behavior is impaired in the unilateral 6-OHDA rat model and may represent a useful tool to quantify motor deficits in this model.

A PHOTOELASTIC STUDY ON THE STRESS ANALYSIS UNDER MADIBULAR DISTAL-EXTENSION REMOVABLE PARTIAL DENTURE WITH DIFFERENT DESIGN OF THE MAJOR CONNECTOR (주 연결장치의 설계변화에 따른 하악 유리단 국소의치의 광탄성 응력 분석에 관한 연구)

  • Lee, Kyw-Chil;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.177-194
    • /
    • 1991
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from a distal extension removable partial dentures with three kinds of mandibular major connectors, that is, lingual bar, linguoplate, and swing-lock attachment. A photoelastic model was made of the epoxy resin(PC-1) and hardener(PCH-1) and coated with plastic cement-1 (PC-1) at the lingual surface of the epoxy model and set with three kinds of chrome-cobalt removable partial dentures. A bilateral vertical load of 15kg to the middle portion of the metal bar crossing both the first molars of the right and the left, and a unilateral vertical load of 12.5kg to the right first molar were applied with the use of specially designed loading device and the reflective circular polariscope was used to analyze the photoelastic model under each condition. The following results were obtained : 1. When the bilateral vertical load was applied, the magnitude and distribution of the stress concentration of the edentulous area and the terminal abutment or adjacent teeth was in the order of lingual bar, linguoplate, swing-lock attachment. 2. When the unilateral vertical load was applied, the magnitude and distribution of the stress concentration of the edentulous area and the terminal abutment or adjacent teeth was in the order of lingual bar, linguoplate, swing-lock attachment. 3. When the unilateral vertical load was applied, the magnitude and distribution of the stress concentration of the termial abutment or adjacent teeth on the non-loaded side showed the least stress distribution in case of swing-lock attachment. 4. When the bilateral vertical load and the unilateral vertical load were applied the swing-lock attachment showed the mildest uniform stress distribution on the edentulous area and the alveolar bone around the abutment teeth.

  • PDF

THREE-DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF THE JAWS AT THE SIMULATED BILATERAL AND UNILATERAL CLENCHINGS (양측성 및 편측성 이악물기시 상하악골 응력변화 및 변위에 관한 3차원 유한요소법적 연구)

  • Heo, Hoon;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.1
    • /
    • pp.71-92
    • /
    • 1999
  • This study is to analyze the stress and displacement on the jaws during the bilateral and unilateral clenching task on three dimensional finite element model of the dentated skull. For this study, the computed tomography(G.E.8800 Quick, USA) was used to scan the total length of human skull in the frontal plane at 1.9mm intervals. The CAD data were extracted from the tomograms through digitizer(Summa Sketch III, USA) and then reconstructed by means of the spline method in the CAD program. In this project, a commercial software I-DEAS(Master Series ver-sion 3.0, SDRC Inc, USA) was used for three-dimensional stress analysis on the finite element model. which consists of articular disc, maxilla, mandible, teeth, periodontal ligament and cranium. The results are as follows. ; 1. During the bilateral clenching, each major muscle forces caused high stresses on various areas of skull: masseter muscle on articular disc and teeth ; temporal muscle on mandible and periodontal ligament ; medial pterygoid muscle on the temporomandibular joint. During the unilateral clenching, masseter muscle induced the maximum stress ; medial pterygoid muscle the minimum stress. 2. During the bilateral clenching, higher compressive stresses on articular disc were generated by the masseter muscle and higher deformation occurred on the most front outer sites. And during the unilateral clenching, temporal muscle and medial pterygoid muscle exerted their forces to twist temporomandibular joint area of the balancing side and induced a higher compressive stresses on the front outer sites of articular disc. 3. During the bilateral clenching, the masseter muscle bended the mandible outwardly, and then caused tensile stresses on the lingual surface of mandibular symphysis. And the medial pterygoid muscle caused tensile stresses on the labial surface of mandibular symphysis. 4. When each muscles were simultaneously applied on jaws, a high stress and displacement took place on mandible rather than on the maxilla. Also, a high stress and displacement took place during the unilateral clenching rather than during the bilateral clenching.

  • PDF

A comprehensive description for damage of concrete subjected to complex loading

  • Meyer, Christian;Peng, Xianghe
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.679-689
    • /
    • 1997
  • The damage of concrete subjected to multiaxial complex loading involves strong anisotropy due to its highly heterogeneous nature and the geometrically anisotropic characteristic of the microcracks. A comprehensive description of concrete damage is proposed by introducing a fourth-order anisotropic damage tenser. The evolution of damage is assumed to be related to the principal components of the current states of stress and damage. The unilateral effect of damage due to the closure and opening of microcracks is taken into account by introducing projection tensors that are also determined by the current state of stress. The proposed damage model considers the different kinds of damage mechanisms that result in different failure modes and different patterns of microdefects that cause different unilateral effects. This damage model is embedded in a thermomechanically consistent constitutive equation in which hardening and the triaxial compression caused shear-enhanced compaction can also be taken into account. The validity of the proposed model is verified by comparing theoretical and experimental results of plain and steel fiber reinforced concrete subjected to complex triaxial stress histories.

Evaluation of unilateral buckling of steel plates in composite concrete-steel shear walls

  • Shamsedin Hashemi;Samaneh Ramezani
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • To increase the stiffness and strength of a reinforced concrete shear wall, steel plates are bolted to the sides of the wall. The general behavior of a composite concrete-steel shear wall is dependent on the buckling of the steel plates that should be prevented. In this paper, the unilateral buckling of steel plates of a composite shear wall is studied using the Rayleigh-Ritz method. To model the unilateral buckling of steel plate, the restraining concrete wall is described as an elastic foundation with high stiffness in compression and zero stiffness in tension. To consider the effect of bolt connections on the plate's buckling, a constrained optimization problem is solved by using Lagrange multipliers method. This process is used to obtain the critical elastic local buckling coefficients of unilaterally-restrained steel plates with various numbers of bolts, subjected to pure compression, bending and shear loading, and the interaction between them. Using these results, the spacing between shear bolts in composite steel plate shear walls is estimated and compared with the results of the AISC seismic provisions (2016). The results show that the AISC seismic provisions(2016) are overly conservative in obtaining the spacing between shear bolts.

A Study of the Effect on Obesity and dyslipidemia in Kidney-hypofunction Animal Model Induced by Unilateral Ureteral Obstruction (신장절제로 유발한 신약(腎弱) 동물 모델에서의 비만 및 지질대사에 대한 영향 평가)

  • Kwak, Jinyoung;Park, Junghwan;Koh, Youngmee;Ahn, Taekwon
    • The Journal of Korean Medicine
    • /
    • v.39 no.2
    • /
    • pp.1-12
    • /
    • 2018
  • Objectives: The objective of this study is to develop a new animal model with Kidney-hypofunction for Sasang Constitutional Medicine, especially for partial Soyangin(one of four constitution which has good digestive function and poor renal function) by Unilateral Ureteral Obstruction, and to estimate the factor related to obesity, dyslipidemia, and metabolic syndrome. Methods: The C57BL/6J mice were divided into 3 groups : normal group, high fat diet(HFD) control group, and HFD group with Unilateral Ureteral Obstruction(UUO). Then, the HFD control group and the experimental group were fed with high fat diet for 6 weeks. Food intake and body weight were measured at regular time by week. After the final experiment, blood was gathered for bloodchemical examination and organs(liver, fatty tissue) were remoed, weighted, and mRNA was analyzed with real-time PCR. Results: The weight growth rate with High fat diet went down by 8.35% in experimental group and had similar FER with the normal group, while HFD control group had higher weight growth rate and FER than any other groups. Also The experimental group had lower triglyceride and LDL cholesterol rate and higher glucose rate in serum. and in mRNA expression, GLUT-9, the protein related to excretion of uric acid and metabolic syndrome, expressed lower rate than that of HFD control group. and IL-6, a kind of cytokine related to obesity and metabolic syndrome, expressed more than HFD control group. Conclusions: It was found that Kidney-hypofunction animal-experimental model is susceptible to metabolic syndrome.

Analysis of finite element stress on the articular disc of jaw during function (기능중 두개골 내 관절원판의 유한요소 스트레스 분석)

  • Kang, Dong-Wan;Lim, Seung-Jin;Ahn, Kwang-Hyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.2
    • /
    • pp.75-84
    • /
    • 2001
  • The purpose of this study is to to analyze the mechanical stress on articular disk of the dentated skull with the condition of unilateral posterior molar missing. For this study, the three dimensional finite element model of human skull scanned by means of computed tomography. (G.E. 8800 Quick, USA) was constructed. The finite element model of jaws is composed of 98,394 elements and 38,321 nodes, and it consists of articular disc, maxilla, mandible, teeth, periodontal ligament and cranium. Boundary condition included rigid restraints at the first molar and endosteal cortical surfaces of the insertion points of temporal bone. The data derived from Nelson's study were used for the loading conditions of mandible during clenchings and for maxilla, new loading and constraint conditions were applied. A clenching task during intercuspal position was modeled to the three dimensional finite element model. The stress level and displacement of articualr disc on the model with unilateral posterior molar missing under bilateral clenching task can be analyzed. During bilateral clenchings, the compressive stress level and diplacement of the articular disk on the side of unilateral posterior molar missing is greater than that on the case with full dentition, whereas a higher stress was found on the disk on the balancing side of the full dentition. Although this kind of study is not enough to explain the role of occlusion as an etiologic factor of TMD, there may be a possibiliy that the condition of posterior molar missings may contribute in part to the TMJ biomechanics.

  • PDF

AN ANALYSIS OF STRESS DISTRIBUTION IN THE CASE OF UNILATERAL MOLAR EXPANSION WITH PRECISION LINGUAL ARCH BY FINITE ELEMENT METHOD (구치 편측확장을 위한 Precision Lingual Arch 적용시 응력분포에 관한 유한요소법적 연구)

  • Koo, Bon-Chan;Sohn, Byung-Wha
    • The korean journal of orthodontics
    • /
    • v.24 no.3 s.46
    • /
    • pp.721-733
    • /
    • 1994
  • Orthodontic tooth movement is closely related to the stress on the periodontal tissue. In this research the finite element method was used to observe the stress distribution and to find the best condition for effective tooth movement in the case of unilateral molar expansion. The author constructed the model of lower dental arch of average Korean adult and used $.032'\times.032'\times60mm$ TMA wire. The wire was deflected in the horizontal and vertical direction to give the 16 conditions. The following results were obtained ; 1. When the moment and force were controlled properly the movement of anchor tooth was minimized and the movement of moving tooth was maximized. 2. As the initial horizontal deflection increased the buccal displacement of both teeth was also increased. As the initial horizontal deflection increased the lingual movement of anchor tooth and the buccal movement of moving tooth increased. 3. When the initial horizontal and vertical deflection rate was 1.5 the effective movement of moving tooth was observed with minimal displacement of anchor tooth.

  • PDF