• 제목/요약/키워드: uniformly accretive operator

검색결과 18건 처리시간 0.016초

ON FIXED POINT OF UNIFORMLY PSEUDO-CONTRACTIVE OPERATOR AND SOLUTION OF EQUATION WITH UNIFORMLY ACCRETIVE OPERATOR

  • Xu, Yuguang;Liu, Zeqing;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • 제24권3호
    • /
    • pp.305-315
    • /
    • 2008
  • The purpose of this paper is to study the existence and uniqueness of the fixed point of uniformly pseudo-contractive operator and the solution of equation with uniformly accretive operator, and to approximate the fixed point and the solution by the Mann iterative sequence in an arbitrary Banach space or an uniformly smooth Banach space respectively. The results presented in this paper show that if X is a real Banach space and A : X $\rightarrow$ X is an uniformly accretive operator and (I-A)X is bounded then A is a mapping onto X when A is continuous or $X^*$ is uniformly convex and A is demicontinuous. Consequently, the corresponding results which depend on the assumptions that the fixed point of operator and solution of the equation are in existence are improved.

  • PDF

ITERATIVE APPROXIMATION TO M-ACCRETIVE OPERATOR EQUATIONS IN BANACH SPACES

  • Park, Jong An;Park, Yang Seob
    • Korean Journal of Mathematics
    • /
    • 제4권2호
    • /
    • pp.83-88
    • /
    • 1996
  • In 1994 Z.Liang constructed an iterative method for the solution of nonlinear equations involving m-accretive operators in uniformly smooth Banach spaces. In this paper we apply the slight variants of Liang's iterative methods and generalize the results of Z.Liang. Moreover our proof is more simple than Liang's proof.

  • PDF

GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION PROBLEMS WITH RANDOM FUZZY MAPPINGS IN BANACH SPACES

  • Balooee, Javad
    • 대한수학회논문집
    • /
    • 제28권2호
    • /
    • pp.243-267
    • /
    • 2013
  • This paper is dedicated to study a new class of general nonlinear random A-maximal $m$-relaxed ${\eta}$-accretive (so called (A, ${\eta}$)-accretive [49]) equations with random relaxed cocoercive mappings and random fuzzy mappings in $q$-uniformly smooth Banach spaces. By utilizing the resolvent operator technique for A-maximal $m$-relaxed ${\eta}$-accretive mappings due to Lan et al. and Chang's lemma [13], some new iterative algorithms with mixed errors for finding the approximate solutions of the aforesaid class of nonlinear random equations are constructed. The convergence analysis of the proposed iterative algorithms under some suitable conditions are also studied.

ITERATIVE PROCESS WITH ERRORS FOR m-ACCRETIVE OPERATORS

  • Baek, J.H;Cho, Y.J.;Chang, S.S
    • 대한수학회지
    • /
    • 제35권1호
    • /
    • pp.191-205
    • /
    • 1998
  • In this paper, we prove that the Mann and Ishikawa iteration sequences with errors converge strongly to the unique solution of the equation x + Tx = f, where T is an m-accretive operator in uniformly smooth Banach spaces. Our results extend and improve those of Chidume, Ding, Zhu and others.

  • PDF

Strong Convergence Theorems for Common Points of a Finite Family of Accretive Operators

  • Jeong, Jae Ug;Kim, Soo Hwan
    • Kyungpook Mathematical Journal
    • /
    • 제59권3호
    • /
    • pp.445-464
    • /
    • 2019
  • In this paper, we propose a new iterative algorithm generated by a finite family of accretive operators in a q-uniformly smooth Banach space. We prove the strong convergence of the proposed iterative algorithm. The results presented in this paper are interesting extensions and improvements of known results of Qin et al. [Fixed Point Theory Appl. 2014(2014): 166], Kim and Xu [Nonlinear Anal. 61(2005), 51-60] and Benavides et al. [Math. Nachr. 248(2003), 62-71].

A HYBRID PROXIMAL POINT ALGORITHM AND STABILITY FOR SET-VALUED MIXED VARIATIONAL INCLUSIONS INVOLVING (A, ${\eta}$)-ACCRETIVE MAPPINGS

  • Kim, Jong-Kyu;Li, Hong Gang
    • East Asian mathematical journal
    • /
    • 제26권5호
    • /
    • pp.703-714
    • /
    • 2010
  • A new class of nonlinear set-valued mixed variational inclusions involving (A, ${\eta}$)-accretive mappings in Banach spaces is introduced and studied, which includes many kind of variational inclusion (inequality) and complementarity problems as special cases. By using the resolvent operator associated with (A, ${\eta}$)-accretive operator due to Lan-Cho-Verma, the existence of solution for this kind of variational inclusion is proved, and a new hybrid proximal point algorithm is established and suggested, the convergence and stability theorems of iterative sequences generated by new iterative algorithms are also given in q-uniformly smooth Banach spaces.

APPROXIMATION AND CONVERGENCE OF ACCRETIVE OPERATORS

  • Koh, Young Mee;Lee, Young S.
    • Korean Journal of Mathematics
    • /
    • 제4권2호
    • /
    • pp.125-133
    • /
    • 1996
  • We show that if X is a reflexive Banach space with a uniformly G$\hat{a}$teaux differentiable norm, then the convergence of semigroups acting on Banach spaces $X_n$ implies the convergence of resolvents of generators of semigroups.

  • PDF

STRONG CONVERGENCE AND ALMOST STABILITY OF ISHIKAWA ITERATIVE SCHEMES WITH ERRORS IN BANACH SPACES

  • Zeqing Liu;Kim, Jong-Kyu;Park, Hye-Kyeong
    • Journal of applied mathematics & informatics
    • /
    • 제10권1_2호
    • /
    • pp.261-275
    • /
    • 2002
  • Let T be a local strongly accretive operator from a real uniformly smooth Banach space X into itself. It is proved that Ishikawa iterative schemes with errors converge strongly to a unique solution of the equations T$\_$x/ = f and x + T$\_$x/ = f, respectively, and are almost T$\_$b/-stable. The related results deal with the strong convergence and almost T$\_$b/-stability of Ishikawa iterative schemes with errors for local strongly pseudocontractive operators.

STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR FINDING COMMON ZEROS OF A FINITE FAMILY OF ACCRETIVE OPERATORS

  • Jung, Jong-Soo
    • 대한수학회논문집
    • /
    • 제24권3호
    • /
    • pp.381-393
    • /
    • 2009
  • Strong convergence theorems on viscosity approximation methods for finding a common zero of a finite family accretive operators are established in a reflexive and strictly Banach space having a uniformly G$\hat{a}$teaux differentiable norm. The main theorems supplement the recent corresponding results of Wong et al. [29] and Zegeye and Shahzad [32] to the viscosity method together with different control conditions. Our results also improve the corresponding results of [9, 16, 18, 19, 25] for finite nonexpansive mappings to the case of finite pseudocontractive mappings.

A SYSTEM OF VARIATIONAL INCLUSIONS IN BANACH SPACES

  • Liu, Zeqing;Zhao, Liangshi;Hwang, Hong-Taek;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • 제26권5호
    • /
    • pp.681-691
    • /
    • 2010
  • A system of variational inclusions with (A, ${\eta}$, m)-accretive operators in real q-uniformly smooth Banach spaces is introduced. Using the resolvent operator technique associated with (A, ${\eta}$, m)-accretive operators, we prove the existence and uniqueness of solutions for this system of variational inclusions and propose a Mann type iterative algorithm for approximating the unique solution for the system of variational inclusions.