• Title/Summary/Keyword: uniform wind speed

Search Result 44, Processing Time 0.023 seconds

Non-uniform wind environment in mountainous terrain and aerostatic stability of a bridge

  • Chen, Xingyu;Guo, Junjie;Tang, Haojun;Li, Yongle;Wang, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.649-662
    • /
    • 2020
  • The existence of a dam has potential effects on the surrounding wind environment especially when it is located in mountainous areas. In this situation, the long-span bridge over the reservoir can easily be exposed to non-uniform incoming flows, affecting its wind-resistance performance. This paper presents a study on the aerostatic stability of such a bridge. Wind tunnel tests were first carried out to investigate the wind environment above a mountainous reservoir. The results show that the angle of attack and the wind speed along the bridge axis show obvious non-uniform characteristics, which is related to the inflow direction. When winds come from the south where the river is winding, the angle of attack varies along the span direction significantly. The finite element model for the bridge was established using ANSYS software, and effects of non-uniform wind loads on the aerostatic stability were computed. Non-uniform angle of attack and wind speed are unfavorable to the aerostatic stability of the bridge, especially the former. When the combined action of non-uniform angle of attack and wind speed is considered, the critical wind speed of aerostatic instability is further reduced. Moreover, the aerostatic stability of the bridge is closely related to the dam height.

Numerical Estimation of Wind Loads on FLNG by Computational Fluid Dynamics (전산유체역학을 이용한 FLNG의 풍하중 추정에 관한 연구)

  • Sang-Eui, Lee
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.491-500
    • /
    • 2022
  • It has been noted that an accurate estimation of wind loads on offshore structures such as an FLNG (Liquefied Natural Gas Floating P roduction Storage Offloading Units, LNG FPSOs) with a large topside plays an important role in the safety design of hull and mooring system. Therefore, the present study aims to develop a computational model for estimating the wind load acting on an FLNG. In particular, it is the sequel to the previous research by the author. The numerical computation model in the present study was modified based on the previous research. Numerical analysis for estimating wind loads was performed in two conditions for an interval of wind direction (α), 15° over the range of 0° to 360°. One condition is uniform wind speed and the other is the NPD model reflecting the wind speed profile. At first, the effect of sand-grain roughness on the speed profile of the NPD model was studied. Based on the developed NPD model, mesh convergence tests were carried out for 3 wind headings, i.e. head, quartering, and beam. Finally, wind loads on 6-degrees of freedom were numerically estimated and compared by two boundary conditions, uniform speed, and the NPD model. In the present study, a commercial RANS-based viscous solver, STAR-CCM+ (ver. 17.02) was adopted. In summary, wind loads in surge and yaw from the wind speed profile boundary condition were increased by 20.35% and 34.27% at most. Particularly, the interval mean of sway (45° < α <135°, 225° < α < 315°) and roll (60° < α < 135°, 225° < α < 270°) increased by 15.60% and 10.89% against the uniform wind speed (10m/s) boundary condition.

Effect of Wind Speed Profile on Wind Loads of a Fishing Boat (풍속 분포곡선이 어선의 풍하중에 미치는 영향에 관한 연구)

  • Lee, Sang-Eui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.922-930
    • /
    • 2020
  • Marine accidents involving fishing boats, caused by a loss of stability, have been increasing over the last decade. One of the main reasons for these accidents is a sudden wind attacks. In this regard, the wind loads acting on the ship hull need to be estimated accurately for safety assessments of the motion and maneuverability of the ship. Therefore, this study aims to develop a computational model for the inlet boundary condition and to numerically estimate the wind load acting on a fishing boat. In particular, wind loads acting on a fishing boat at the wind speed profile boundary condition were compared with the numerical results obtained under uniform wind speed. The wind loads were estimated at intervals of 15° over the range of 0° to 180°, and i.e., a total of 13 cases. Furthermore, a numerical mesh model was developed based on the results of the mesh dependency test. The numerical analysis was performed using the RANS-based commercial solver STAR-CCM+ (ver. 13.06) with the k-ω turbulent model in the steady state. The wind loads for surge, sway, and heave motions were reduced by 39.5 %, 41.6 %, and 46.1 % and roll, pitch, and yaw motions were 48.2 %, 50.6 %, and 36.5 %, respectively, as compared with the values under uniform wind speed. It was confirmed that the developed inlet boundary condition describing the wind speed gradient with respect to height features higher accuracy than the boundary condition of uniform wind speed. The insights obtained in this study can be useful for the development of a numerical computation method for ships.

A Robust Pitch Control of Wind Turbine Systems (풍력 터빈 시스템의 강인 피치 제어)

  • Han, Myung-Chul;Sung, Chang-Min;Hwang, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1287-1293
    • /
    • 2013
  • In this paper, we consider variable speed wind turbine systems containing uncertain elements. Though PI controller is generally used for pitch control, it cannot guarantee a stability and performance of the complicated wind turbine systems. A robust pitch control scheme is proposed to regulate the electric power output above the rated wind speed. The pitch controller is designed in order to guarantee uniform boundedness and uniform ultimate boundedness based on the bound values of the set where the uncertainties are laid or moves. In order to verify the proposed control scheme, we present stability analysis and simulation results using Matlab/Simulink.

Aerodynamic Load Analysis for Wind Turbine Blade in Uniform Flow and Ground Shear Flow (균일 흐름과 지상 전단 흐름에 놓인 수평축 풍력터빈 블레이드의 공력 하중 비교)

  • Kim, Jin;Ryu, Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.387-390
    • /
    • 2007
  • Recently the diameter of the 5MW wind turbine reaches 126m, and the tower height is nearly the same with the wind turbine diameter. The blade will experience periodic inflow oscillation due to blade rotation inside the ground shear flow region, that is, the inflow velocity is maximum at uppermost position and minimum at lowermost position. In this study we compare the aerodynamic data between two inflow conditions, i.e, uniform flow and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially My at hub and $F_x$, $M_y$, $M_z$ at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue load analysis.

  • PDF

Wind profiles of tropical cyclones as observed by Doppler wind profiler and anemometer

  • He, Y.C.;Chan, P.W.;Li, Q.S.
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.419-433
    • /
    • 2013
  • This paper investigates the vertical profiles of horizontal mean wind speed and direction based on the synchronized measurements from a Doppler radar profiler and an anemometer during 16 tropical cyclones at a coastal site in Hong Kong. The speed profiles with both open sea and hilly exposures were found to follow the log-law below a height of 500 m. Above this height, there was an additional wind speed shear in the profile for hilly upwind terrain. The fitting parameters with both the power-law and the log-law varied with wind strength. The direction profiles were also sensitive to local terrain setups and surrounding topographic features. For a uniform open sea terrain, wind direction veered logarithmically with height from the surface level up to the free atmospheric altitude of about 1200 m. The accumulated veering angle within the whole boundary layer was observed to be $30^{\circ}$. Mean wind direction under other terrain conditions also increased logarithmically with height above 500 m with a trend of rougher exposures corresponding to lager veering angles. A number of empirical parameters for engineering applications were presented, including the speed adjustment factors, power exponents of speed profiles, and veering angle, etc. The objective of this study aims to provide useful information on boundary layer wind characteristics for wind-resistant design of high-rise structures in coastal areas.

Dynamic analysis of wind-vehicle-bridge system considering additional moments of non-uniform winds by wind shielding effect of multi-limb tower

  • Xu Han;Huoyue Xiang;Xuli Chen;Yongle Li
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • To evaluate the wind shielding effect of bridge towers with multiple limbs on high-speed trains, a wind tunnel test was conducted to investigate the aerodynamic characteristics of vehicles traversing multi-limb towers, which represented a combination of the steady aerodynamic coefficient of the vehicle-bridge system and wind environment around the tower. Subsequently, the analysis model of wind-vehicle-bridge (WVB) system considering the additional moments caused by lift and drag forces under nonuniform wind was proposed, and the reliability and accuracy of the proposed model of WVB system were verified using another model. Finally, the factors influencing the wind shielding effect of multi-limb towers were analyzed. The results indicate that the wind speed distributions along the span exhibit two sudden changes, and the wind speed generally decreases with increasing wind direction angle. The pitching and yawing accelerations of vehicles under nonuniform wind loads significantly increase due to the additional pitching and yawing moments. The sudden change values of the lateral and yawing accelerations caused by the wind shielding effect of multi-limb tower are 0.43 m/s2 and 0.11 rad/s2 within 0.4 s, respectively. The results indicate that the wind shielding effect of a multi-limb tower is the controlling factor in WVB systems.

Determination of 2D solar wind speed maps from LASCO C3 observations using Fourier motion filter

  • Cho, Il-Hyun;Moon, Yong-Jae;Lee, Jin-Yi;Nakariakov, Valery;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.68-68
    • /
    • 2017
  • Measurements of solar wind speed near the Sun (< 0.1 AU) are important for understanding acceleration mechanism of solar wind as well as space weather predictions, but hard to directly measure them. For the first time, we provide 2D solar wind speed maps in the LASCO field of view using three consecutive days data. By applying the Fourier convolution and inverse Fourier transform, we decompose the 3D intensity data (r, PA, t) into the 4D one (r, PA, t, v). Then, we take the weighted mean along speed to determine the solar wind speeds that gives V(r, PA, t) in every 30 min. The estimated radial speeds are consistent with those given by an artificial flow and plasma blobs. We find that the estimated speeds are moderately correlated with those from slow CMEs and those from IPS observations. A comparison of yearly solar wind speed maps in 2000 and 2009 shows that they have very remarkable differences: azimuthally uniform distribution in 2000 and bi-modal distribution (high speed near the poles and low speed near the equator) in 2009.

  • PDF

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (II): with and without Vertical Wind Shear Effect (수평축 풍력터빈의 공력 하중 비교 (II): 수직 전단흐름 효과의 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.399-406
    • /
    • 2016
  • The large scale wind turbine blades usually experience periodic change of inflow speed due to blade rotation inside the ground shear flow region. Because of the vertical wind shear, the inflow velocity in the boundary layer region is maximum at uppermost position and minimum at lowermost position. These spatial distribution of wind speeds can lead to the periodic oscillation of the 6-component loads at hub and low speed shaft of the wind turbine rotor. In this study we compare the aerodynamic loads between two inflow conditions, i.e, uniform flow (no vertical wind shear effect) and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially bending moment and thrust at hub, and bending moments at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue analysis.

Size Distribution of Droplets Sprayed by an Orchard Sprayer (과수방제기 살포입자의 직경 분포특성)

  • 구영모;신범수;김상헌
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.431-440
    • /
    • 2001
  • Generated agri-chemical droplets by orchard sprayers are evaporated regenerated and transported along wind streams. The droplets are deposited to targets after changing their sizes, affecting the retention of droplets. An orchard sprayer, designed for spraying grapevines was studied on the spatial distribution of droplet size. The experimental variables were spray direction (0, 22.5, 45, 67.5 and 90˚), distance(2.5, 3.0 and 3.5 m) and fan speed (2,075 and 3,031 rpm). Droplet sizes were converted and analyzed from spray stains, sampled using water sensitive papers. The number median diameter (NMD) increased with an increase of the distance due to disappeared fine droplets (<50 ㎛): however, the volume median diameter (VMD) decreased due to shrunken large droplets (>100 ㎛). Fast fan speed delivered large droplets to 3.5 m, but the spatial distributions of NMD and VMD were not uniform. Slower fan speed decreased the possibility of evaporation and drift; therefore, plenty of droplets were maintained up to 3.0 m. The upward blasting distance was limited within 3 m, but the limit to the ground level was extended to 3.5 m. Concentrated wind and droplets to the ground level should be redistributed to upper canopy direction, leading more uniform deposits. High speed wind and system pressure should be avoided because of generating fine droplets, which would be disappeared and drifted away.

  • PDF