Acknowledgement
The authors are grateful for the financial supports from the National Natural Science Foundation of China (51708463, 51525804), the Fundamental Research Funds for the Central Universities (2682019CX04).
References
- Bilal, M., Birkelund, Y., Homola, M. and Virk, M.S. (2016), "Wind over complex terrain - Microscale modelling with two types of mesoscale winds at Nygardsfjell", Renew. Energy, 99, 647-653. https://doi.org/10.1016/j.renene.2016.07.042.
- Blocken, B., van der Hout, A., Dekker, J. and Weiler, O. (2015), "CFD simulation of wind flow over natural complex terrain: Case study with validation by field measurements for Ria de Ferrol, Galicia, Spain", J. Wind Eng. Ind. Aerod., 147, 43-57. https://doi.org/10.1016/j.jweia.2015.09.007.
- Boonyapinyo V., Lauhatanon Y. and Lukkunaprasit P. (2006), "Nonlinear aerostatic stability analysis of suspension bridges", Eng. Struct., 28(5), 793-803. https://doi.org/10.1016/j.engstruct.2005.10.008
- Cao, S. and Tamura, T. (2006), "Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill", J. Wind Eng. Ind. Aerod., 94(1), 1-19. https://doi.org/10.1016/j.jweia.2005.10.001
- Cao, S., Wang, T., Ge, Y. and Tamura, Y. (2012), "Numerical study on turbulent boundary layers over two-dimensional hills - Effects of surface roughness and slope", J. Wind Eng. Ind. Aerod., 104-106, 342-349. https://doi.org/10.1016/j.jweia.2012.02.022.
- Cheng, J., Jiang, J.J., Xiao, R.C. and Xiang, H.F. (2002), "Nonlinear aerostatic stability analysis of Jiang Yin suspension bridge", Eng. Struct., 24(6), 773-781. https://doi.org/10.1016/S0141-0296(02)00006-8
- Cheng, J., Xiao, R.C., Xiang, H.F. and Jiang, J.J. (2003), "NASAB: a finite element software for the nonlinear aerostatic stability analysis of cable-supported bridges", Adv. Eng. Softw., 34(5), 287-296. https://doi.org/10.1016/S0965-9978(03)00010-3.
- Ferreira, A.D., Silva, M.C.G., Viegas, D.X. and Lopes, A.G. (1991), "Wind tunnel simulation of the flow around two-dimensional hills", J. Wind Eng. Ind. Aerod., 38, 109-122. https://doi.org/10.1016/0167-6105(91)90033-S.
- Guignard, F., Lovallo, M., Laib, M., Golay, J., Kanevski, M., Helbig, N. and Telesca, L. (2019), "Investigating the time dynamics of wind speed in complex terrains by using the Fisher-Shannon method", Physica A, 523, 611-621. https://doi.org/10.1016/j.physa.2019.02.048.
- Hu, P., Han, Y., Xu, G., Cai, C.S. and Cheng, W. (2019), "Effects of inhomogeneous wind fields on the aerostatic stability of a long-span cable-stayed bridge located in a mountain-gorge terrain", 33(3), 04020006. J. Aerospace Eng., https://doi.10.1061/(ASCE)AS.1943-5525.0001117.
- Hu, P., Li, Y., Huang, G., Kang, R. and Liao, H. (2015), "The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test", Wind Struct., 20(1), 15-36. https://doi.org/10.12989/was.2015.20.1.015
- Hui, M.C.H., Larsen, A. and Xiang, H.F. (2009), "Wind turbulence characteristics study at the Stonecutters Bridge site: Part I-Mean wind and turbulence intensities", J. Wind Eng. Ind. Aerod., 97, 22-36. https://doi.org/10.1016/j.jweia.2008.11.002.
- Hunt, J.C.R., Leibovich, S. and Richards, K.J. (1988), "Turbulent shear flows over low hills", Q. J. Roy. Meteor. Soc., 114(484), 1435-1470. https://doi.org/10.1002/qj.49711448405.
- Jing, H., Liao, H., Ma, C. and Chen, K. (2019), "Influence of elevated water levels on wind field characteristics at a bridge site", Adv. Struct. Eng., 22(7), 1783-1795. https://doi.org/10.1177/1369433218825048.
- Kim, H.G., Lee, C.M., Lim, H.C. and Kyong, N.H. (1997), "An experimental and numerical study on the flow over two-dimensional hills", J. Wind Eng. Ind. Aerod., 66(1), 17-33. https://doi.org/10.1016/S0167-6105(97)00007-X.
- Li, Y., Hu, P., Xu, X. and Qiu, J. (2017), "Wind characteristics at bridge site in a deep-cutting gorge by wind tunnel test", J. Wind Eng. Ind. Aerod., 160, 30-46. https://doi.org/10.1016/j.jweia.2016.11.002.
- Li, Y., Xu, X., Zhang, M. and Xu, Y. (2017), "Wind tunnel test and numerical simulation of wind characteristics at a bridge site in mountainous terrain", Adv. Struct. Eng., 20(8), 1223-1231. https://doi.org/10.1177/1369433216673377.
- Lystad, T.M., Fenerci, A. and Oiseth, O. (2018), "Evaluation of mast measurements and wind tunnel terrain models to describe spatially variable wind field characteristics for long-span bridge design", J. Wind Eng. Ind. Aerod., 179, 558-573. https://doi.org/10.1016/j.jweia.2018.06.021.
- Mason, P.J. and King, J.C. (1985), "Measurements and predictions of flow and turbulence over an isolated hill of moderate slope", Q. J. Roy. Meteor. Soc., 111(468), 617-640. https://doi.org/10.1002/qj.49711146818.
- Mason, P.J. and Sykes, R.I. (1979), "Flow over an isolated hill of moderate slope", Q. J. Roy. Meteor. Soc., 105(444), 383-395. https://doi.org/10.1002/qj.49710544405.
- Ministry of Transport of the People's Republic of China (2018), "Wind-resistant design specification for highway bridges (JTG/T 3360-01-2018)", Beijing: China Communications Press Co., Ltd. (in Chinese)
- Mitsuta, Y., Tsukamoto, O. and Nenoi, M. (1983), "Wind characteristics over complex terrain", J. Wind Eng. Ind. Aerod., 15(1), 185-196. https://doi.org/10.1016/0167-6105(83)90189-7.
- Ren, H., Laima, S., Chen, W.L., Zhang, B., Guo, A. and Li, H. (2018), "Numerical simulation and prediction of spatial wind field under complex terrain", J. Wind Eng. Ind. Aerod., 180, 49-65. https://doi.org/10.1016/j.jweia.2018.07.012.
- Tang, H., Li, Y. and Shum, K.M. (2018), "Flutter performance of long-span suspension bridges under non-uniform inflow", Adv. Struct. Eng., 21(2), 201-213. https://doi.org/10.1177/1369433217713926.
- Wang, Y., Wang, B. and Li, Y. (2017), "Numerical simulation of wind characteristics over bridge site in complicated mountains under the influence of reservoir water storage", J. Fuzhou University (Natural Science Edition), 45(4), 466-471. (in Chinese). https://doi.org/10.7631/issn.1000-2243.2017.04.0466.
- Xiao, R.C. and Cheng, J. (2004), "Advanced aerostatic stability analysis of suspension bridges", Wind Struct., 7(1), 55-70. https://doi.org/10.12989/was.2004.7.1.055.
- Xu, M., Guo, W., Xia, H. and Li, K. (2016), "Nonlinear aerostatic stability analysis of Hutong cable-stayed rail-cum-road bridge", Wind Struct., 23(6), 485-503. https://doi.org/10.12989/was.2016.23.6.485.
- Zhang, W.M., Ge, Y.J. and Levitan, M.L. (2013a), "A method for nonlinear aerostatic stability analysis of long-span suspension bridges under yaw wind", Wind Struct., 17(5), 553-564. https://doi.org/10.12989/was.2013.17.5.553.
- Zhang, W.M., Ge, Y.J. and Levitan, M.L. (2013b), "Nonlinear aerostatic stability analysis of new suspension bridges with multiple main spans", J Braz. Soc. Mech. Sci. Eng., 35, 143-151. https://doi.org/10.1007/s40430-013-0011-4.
- Zhang, X. (2007), "Influence of some factors on the aerodynamic behavior of long-span suspension bridges", J. Wind Eng. Ind. Aerod., 95, 149-164. https://doi.org/10.1016/j.jweia.2006.08.003.
- Zhang, Z.T., Ge, Y.J. and Yang, Y.X. (2013), "Torsional stiffness degradation and aerostatic divergence of suspension bridge decks", J. Fluid. Struct., 40, 269-283. https://doi.org/10.1016/j.jfluidstructs.2013.05.001.
Cited by
- Study on the Effects of Pedestrians on the Aerostatic Response of a Long-Span Pedestrian Suspension Bridge vol.25, pp.10, 2020, https://doi.org/10.1007/s12205-021-2127-x