• 제목/요약/키워드: uniform load

검색결과 645건 처리시간 0.023초

결합하중을 받는 임의단면 기둥의 좌굴후 해석 (Post-buckling of Non-uniform Cantilever Column Subjected to a Combined Load)

  • 신영재;지바
    • 한국소음진동공학회논문집
    • /
    • 제12권5호
    • /
    • pp.323-329
    • /
    • 2002
  • 강도와 작용하중의 분포 및 설계조건 등에 의해 단면이 길이에 따라 임의로 된 외팔 기둥이 구조물 등에 많이 사용되고 있어서 이들에 대한 좌굴에 관한 해석이 구조물의 설계시에는 매우 중요하다. 본 논문에서는 분포하중, 집중하중을 받는 가변단면 기둥의 좌굴 해석후 해석 문제를 differential transformation이라는 새로운 변환방법을 적용하여 해석하여 기존의 해석결과와 비교, 검토하였고, 또한 임의의 가변단면의 외팔 기둥에 대한 좌굴후 해석의 결과를 제시하였다.

A New Traffic Load Shedding Scheme in Microcellular CDMA with Uniform and Non-uniform Traffic Load

  • Park, Woo-Goo;Rhee, Ja-Gan;Lee, Hu;Lee, Sang-Ho
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권5호
    • /
    • pp.33-39
    • /
    • 1997
  • In this paper we proposed a new traffic load shedding scheme which maximizes the throughput of traffic control by decreasing the load of the hot-spot cell using minimum load cell selection (MLCS) algorithm and deployed control flow of calls to define characteristic for hadoff region. we compared the performance of the random shedding approach with that of the proposed algorithm. The results of simulation show that MLCS algorithm minimizes the cal blocking rate under a high-density traffic compared to the random shedding scheme.

  • PDF

단면감소를 고려한 파이프의 좌굴에 관한 연구 (Buckling Analysis of Pipelines with Reduced Cross Section)

  • 최동호;고영찬;권순길;이종선
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.865-873
    • /
    • 2013
  • 본 연구에서는 부식이나 보강재가 고려된 비균일한 두께를 가지는 파이프라인에 대하여 일정한 외압을 받을 때의 탄성 좌굴하중을 이론적으로 산정하였다. 길이가 매우 긴 원통형 쉘 구조물인 파이프라인을 단순한 링 구조물로 가정하였고, 고유함수를 유도하여 좌굴 임계하중을 산정하였다. 또한, 두께 변화와 두께가 감소된 구간의 범위에 따른 변수해석을 수행하였다. 이론식에 의해 산정된 좌굴 임계하중 결과를 유한요소해석 결과와 비교하여 검증하였고, 두 결과는 잘 일치함을 알 수 있었다.

Higher order static analysis of truncated conical sandwich panels with flexible cores

  • Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1333-1354
    • /
    • 2015
  • A higher order analytical solution for static analysis of a truncated conical composite sandwich panel subjected to different loading conditions was presented in this paper which was based on a new improved higher order sandwich panel theory. Bending analysis of sandwich structures with flexible cores subjected to concentrated load, uniform distributed load on a patch, harmonic and uniform distributed loads on the top and/or bottom face sheet of the sandwich structure was also investigated. For the first time, bending analysis of truncated conical composite sandwich panels with flexible cores was performed. The governing equations were derived by principle of minimum potential energy. The first order shear deformation theory was used for the composite face sheets and for the core while assuming a polynomial description of the displacement fields. Also, the in-plane hoop stresses of the core were considered. In order to assure accuracy of the present formulations, convergence of the results was examined. Effects of types of boundary conditions, types of applied loads, conical angles and fiber angles on bending analysis of truncated conical composite sandwich panels were studied. As, there is no research on higher order bending analysis of conical sandwich panels with flexible cores, the results were validated by ABAQUS FE code. The present approach can be linked with the standard optimization programs and it can be used in the iteration process of the structural optimization. The proposed approach facilitates investigation of the effect of physical and geometrical parameters on the bending response of sandwich composite structures.

Experimental study on the compression of concrete filled steel tubular latticed columns with variable cross section

  • Yang, Yan;Zhou, Jun;Wei, Jiangang;Huang, Lei;Wu, Qingxiong;Chen, Baochun
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.663-675
    • /
    • 2016
  • The effects of slenderness ratio, eccentricity and column slope on the load-carrying capacities and failure modes of variable and uniform concrete filled steel tubular (CFST) latticed columns under axial and eccentric compression were investigated and compared in this study. The results clearly show that all the CFST latticed columns with variable cross section exhibit an overall failure, which is similar to that of CFST latticed columns with a uniform cross section. The load-carrying capacity decreases with the increase of the slenderness ratio or the eccentricity. For 2-m specimens with a slenderness ratio of 9, the ultimate load-carrying capacity is increased by 3% and 5% for variable CFST latticed columns with a slope of 1:40 and 1:20 as compared with that of uniform CFST latticed columns, respectively. For the eccentrically compressed variable CFST latticed columns, the strain of the columns at the loading side, as well as the difference in the strain, increases from the bottom to the cap, and a more significant increase in strain is observed in the cross section closer to the column cap.

과열기 관군에서의 증기유량 균일 배분 연구 (A Study on the Uniform Distribution of Steam Flow in the Superheater Tube System)

  • 박호영;김성철
    • 설비공학논문집
    • /
    • 제20권6호
    • /
    • pp.416-426
    • /
    • 2008
  • The boiler tube failure often experienced in the superheater of a utility boiler can seriously affect the economic and safe operation of the power plant. It has been known that this failure is mainly caused by the thermal load deviation in the superheater tube system, and deeply intensified by the non-uniform distribution of steam flow rates. The nonuniform steam flow is distinctively prominent at low power load rather than at full power load. In this paper, we analyze the steam flow distribution in the superheater tube system by using one dimensional flow network model. At 30% power load, the deviation of steam flow rate is predicted to be within 0.8% of the averaged flow rate. This deviation can be reduced to 0.1% and 0.07% by assuming two cases, that is, the removal of 13th tube at each tube rows and the installation of intermediate header, respectively. The assumed two cases would be effective for the uniform steam flow distribution across 85 superheater tube rows.

면내 압축력 및 바닥하중을 받는 플랫 플레이트의 설계 (Design of RC Flat Plate Subjected to Combined Axial Compressive and Floor Load)

  • 김재요;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.507-512
    • /
    • 2000
  • This paper presents a design procedure using the moment magnifier method that is applicable to RC flat plates subjected to combined axial compressive and uniform or non-uniform floor load. Based on the numerical results, the design values of the buckling coefficient and the effective flexural rigidity, that define the buckling force, have been proposed. Using these design values, this paper provides the design procedure for the moment magnifier method.

  • PDF

전단응력하의 무한체내 타원체불균질물의 균열손상에 따른 하중부하능력과 탄성응력분포 (Load Carrying Capacity due to Cracking Damage of Ellipsoidal Inhomogeneity in Infinite Body under Pure Shear and Its Elastic Stress Distributions)

  • 조영태;임광희;고재용;김홍건
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.87-90
    • /
    • 2001
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the broken reinforcements lose load carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Three dimensional finite element analysis has been carried out on intact and broken ellipsoidal inhomogeneities in an infinite body under pure shear. For the intact inhomogeneity, as well known as Eshelby(1957) solution, the stress distribution is uniform in the inhomogeneity and non-uniform in the surrounding matrix. On the other hand, for the broken inhomogeneity, the stress in the region near crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference of average stresses between the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The load carrying capacity of the broken inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that the broken inhomogeneity with higher aspect ratio still maintains higher load carrying capacity.

  • PDF

사질토 지반의 상대다짐도 및 토층에 따른 연직지중응력 분포 특성 (Characteristics of Vertical Stress Distribution in Sandy Soil According to the Relative Compaction and Composition of the Soil Layer)

  • 남효석;이상호
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.43-50
    • /
    • 2010
  • This study was carried out to evaluate the vertical stress properties in sandy soil according to changes of foundation condition in soil bin compacted three layers. The following conclusions and comparisons have been made based on careful analysis from theoretical and experimental methods. : When sandy soil subjected to circular uniform load, the vertical stress increments ($\Delta\sigma_z$) was increased as load increasing, the maximum values of $\Delta\sigma_z$ was achieved at the point loading axis, and $\Delta\sigma_z$ was not shown over at a distance of three times of loading plate width (B). The vertical stress increments were achieved largely at 80 % relative compaction (Rc) compared to 95 % relative compaction due to stress concentration in sandy soil. When sandy soil subjected to circular uniform load, the $\Delta\sigma_z$ differences between theoretical and experimental values as load increased were more increased and its maximum differences were achieved at stress axis. When gravel surface macadamized over sandy soil subjected to load, the $\Delta\sigma_z$ was concentrated to load axis as load increasing, so that macadamization will be decreased load transmission.

The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load

  • Poortabib, A.;Maghsoudi, M.
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.323-349
    • /
    • 2014
  • In this paper, linear buckling analysis of a curved sandwich beam with a flexible core is investigated. Derivation of equations for face sheets is accomplished via the classical theory of curved beam, whereas for the flexible core, the elasticity equations in polar coordinates are implemented. Employing the von-Karman type geometrical non-linearity in strain-displacement relations, nonlinear governing equations are resulted. Linear pre-buckling analysis is performed neglecting the rotation effects in pre-buckling state. Stability equations are concluded based on the adjacent equilibrium criterion. Considering the movable simply supported type of boundary conditions, suitable trigonometric solutions are adopted which satisfy the assumed edge conditions. The critical uniform load of the beam is obtained as a closed-form expression. Numerical results cover the effects of various parameters on the critical buckling load of the curved beam. It is shown that, face thickness, core thickness, core module, fiber angle of faces, stacking sequence of faces and openin angle of the beam all affect greatly on the buckling pressure of the beam and its buckled shape.