• Title/Summary/Keyword: uniform convergence

Search Result 439, Processing Time 0.029 seconds

Performance Analysis for Weaker Channel User in Non-Uniform Source SSC NOMA with Novel BTS

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.36-41
    • /
    • 2022
  • Recently, to improve the performance of the strongest channel gain user in non-orthogonal multiple access (NOMA) with a non-uniform source and symmetric superposition coding (SSC), a novel bit-to-symbol (BTS) mapping have been proposed. However, only the performance of the user with the stronger channel gain was analyzed. Thus, we compare the bit-error rate (BER) of the new BTS scheme with that of uniform sources, especially for the user with weakest channel gain. First, we show that the performance of the novel BTS scheme for the user with weakest channel gain also improves, compared to that of the uniform sources. Furthermore, the signal-to-noise (SNR) gain of the new BTS scheme over the uniform sourcesis calculated. As a consequence, the novel BTS scheme would improve the performance of the user with weakest channel gain as well as that with the stronger channel gain for SSC NOMA with a non-uniform source.

The modal characteristics of non-uniform multi-span continuous beam bridges

  • Shi, Lu-Ning;Yan, Wei-Ming;He, Hao-Xiang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.997-1017
    • /
    • 2014
  • According to the structure characteristics of the non-uniform beam bridge, a practical model for calculating the vibration equation of the non-uniform beam bridge is given and the application scope of the model includes not only the beam bridge structure but also the non-uniform beam with added masses and elastic supports. Based on the Bernoulli-Euler beam theory, extending the application of the modal perturbation method and establishment of a semi-analytical method for solving the vibration equation of the non-uniform beam with added masses and elastic supports based is able to be made. In the modal subspace of the uniform beam with the elastic supports, the variable coefficient differential equation that describes the dynamic behavior of the non-uniform beam is converted to nonlinear algebraic equations. Extending the application of the modal perturbation method is suitable for solving the vibration equation of the simply supported and continuous non-uniform beam with its arbitrary added masses and elastic supports. The examples, that are analyzed, demonstrate the high precision and fast convergence speed of the method. Further study of the timesaving method for the dynamic characteristics of symmetrical beam and the symmetry of mode shape should be developed. Eventually, the effects of elastic supports and added masses on dynamic characteristics of the three-span non-uniform beam bridge are reported.

Signal Number Estimation Algorithm Based on Uniform Circular Array Antenna

  • Heui-Seon, Park;Hongrae, Kim;Suk-seung, Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • In modern wireless communication systems including beamformers or location-based services (LBS), which employ multiple antenna elements, estimating the number of signals is essential for accurately determining the quality of the communication service. Representative signal number estimation algorithms including the Akaike information criterion (AIC) and minimum description length (MDL) algorithms, which are information theoretical criterion models, determine the number of signals based on a reference value that minimizes each criterion. In general, increasing the number of elements mounted onto the array antenna enhances the performance of estimating the number of signals; however, it increases the computational complexity of the estimation algorithm. In addition, various configurations of array antennas for the increased number of antenna elements should be considered to efficiently utilize them in a limited location. In this paper, we introduce an efficient signal number estimation algorithm based on the beamspace based AIC and MDL techniques that reduce the computational complexity by reducing the dimension of a uniform circular array antenna. Since this algorithm is based on a uniform circular array antenna, it presents the advantages of a circular array antenna. The performance of the proposed signal number estimation algorithm is evaluated through computer simulation examples.

A Non-Uniform Convergence Tolerance Scheme for Enhancing the Branch-and-Bound Method (비균일 수렴허용오차 방법을 이용한 분지한계법 개선에 관한 연구)

  • Jung, Sang-Jin;Chen, Xi;Choi, Gyung-Hyun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.361-371
    • /
    • 2012
  • In order to improve the efficiency of the branch-and-bound method for mixed-discrete nonlinear programming, a nonuniform convergence tolerance scheme is proposed for the continuous subproblem optimizations. The suggested scheme assigns the convergence tolerances for each continuous subproblem optimization according to the maximum constraint violation obtained from the first iteration of each subproblem optimization in order to reduce the total number of function evaluations needed to reach the discrete optimal solution. The proposed tolerance scheme is integrated with five branching order options. The comparative performance test results using the ten combinations of the five branching orders and two convergence tolerance schemes show that the suggested non-uniform convergence tolerance scheme is obviously superior to the uniform one. The results also show that the branching order option using the minimum clearance difference method performed best among the five branching order options. Therefore, we recommend using the "minimum clearance difference method" for branching and the "non-uniform convergence tolerance scheme" for solving discrete optimization problems.

EXPONENTIALLY FITTED NUMERICAL SCHEME FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS INVOLVING SMALL DELAYS

  • ANGASU, MERGA AMARA;DURESSA, GEMECHIS FILE;WOLDAREGAY, MESFIN MEKURIA
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.419-435
    • /
    • 2021
  • This paper deals with numerical treatment of singularly perturbed differential equations involving small delays. The highest order derivative in the equation is multiplied by a perturbation parameter 𝜀 taking arbitrary values in the interval (0, 1]. For small 𝜀, the problem involves a boundary layer of width O(𝜀), where the solution changes by a finite value, while its derivative grows unboundedly as 𝜀 tends to zero. The considered problem contains delay on the convection and reaction terms. The terms with the delays are approximated using Taylor series approximations resulting to asymptotically equivalent singularly perturbed BVPs. Inducing exponential fitting factor for the term containing the singular perturbation parameter and using central finite difference for the derivative terms, numerical scheme is developed. The stability and uniform convergence of difference schemes are studied. Using a priori estimates we show the convergence of the scheme in maximum norm. The scheme converges with second order of convergence for the case 𝜀 = O(N-1) and for the case 𝜀 ≪ N-1, the scheme converge uniformly with first order of convergence, where N is number of mesh intervals in the domain discretization. We compare the accuracy of the developed scheme with the results in the literature. It is found that the proposed scheme gives accurate result than the one in the literatures.

Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.347-371
    • /
    • 2011
  • This paper focuses on post-buckling analysis of Timoshenko beams with various boundary conditions subjected to a non-uniform thermal loading by using the total Lagrangian Timoshenko beam element approximation. Six types of support conditions for the beams are considered. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. As far as the authors know, there is no study on the post-buckling analysis of Timoshenko beams under uniform and non-uniform thermal loading considering full geometric non-linearity investigated by using finite element method. The convergence studies are made and the obtained results are compared with the published results. In the study, the relationships between deflections, end rotational angles, end constraint forces, thermal buckling configuration, stress distributions through the thickness of the beams and temperature rising are illustrated in detail in post-buckling case.

Three Dimensional Volume Reconstruction of an Object from X-ray Iamges using Uniform and Simultaneous ART (USART 방법에 의한 X선 영상으로부터의 삼차원 물체의 형상 복원)

  • Roh, Young-Jun;Cho, Hyung-Suck;Kim, Hyeong-Cheol;Kim, Jong-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. A number of visual or optical technologies have been successfully applied to measure three-dimensional surfaces. However, those conventional visual or optical methods have inherent shortcomings such as occlusion and variant surface reflection. X-ray vision system can be a good solution to these conventional problems, since we can extract the volume information including both the surface geometry and the inner structure of any objects. In the x-ray system, the surface condition of an object, whether it is lambertian or specular, does not affect the inherent characteristics of its x-ray images. In this paper, we propose a three-dimensional x-ray imaging method to reconstruct a three dimensional structure of an object out of two dimensional x-ray image sets. To achieve this by the proposed method, two or more x-ray images projected from different views are needed. Once these images are acquired, the simultaneous algebraic reconstruction technique(SART) is usually utilized. Since the existing SART algorithms have several shortcomings such as low performance in convergence and different convergence within the reconstruction volume of interest, an advanced SART algorithm named as USART(uniform SART) is proposed to avoid such shortcomings and improve the reconstruction performance. Because, each voxel within the volume is equally weighted to update instantaneous value of its internal density, it can achieve uniform convergence property of the reconstructed volume. The algorithm is simulated on various shapes of objects such as a pyramid, a hemisphere and a BGA model. Based on simulation results the performance of the proposed method is compared with that of the conventional SART method.

Manganese Doped LiFePO4 as a Cathode for High Energy Density Lithium Batteries (고에너지밀도 리튬전지를 위한 망간이 첨가된 LiFePO4 양극재료)

  • Kim, Dul-Sun;Kim, Jae-Kwang;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.157-161
    • /
    • 2013
  • Porous $LiMn_{0.6}Fe_{0.4}PO_4$ (LMFP) was synthesized by a sol-gel process. Uniform dispersion of the conductive carbon source throughout LMFP with uniform carbon coating was achieved by heating a stoichiometric mixture of raw materials at $600^{\circ}C$ for 10 h. The crystal structure of LMFP was investigated by Rietveld refinement. The surface structure and pore properties were investigated by SEM, TEM and BET. The LMFP so obtained has a high specific surface area with a uniform, porous, and web-like nano-sized carbon layer at the surface. The initial discharge capacity and energy density were 152 mAh/g and 570 Wh/kg, respectively, at 0.1 C current density, and showed stable cycle performance. The combined effect of high porosity and uniform carbon coating leads to fast lithium ion diffusion and enhanced electrochemical performance.

ON EXACT CONVERGENCE RATE OF STRONG NUMERICAL SCHEMES FOR STOCHASTIC DIFFERENTIAL EQUATIONS

  • Nam, Dou-Gu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.125-130
    • /
    • 2007
  • We propose a simple and intuitive method to derive the exact convergence rate of global $L_{2}-norm$ error for strong numerical approximation of stochastic differential equations the result of which has been reported by Hofmann and $M{\"u}ller-Gronbach\;(2004)$. We conclude that any strong numerical scheme of order ${\gamma}\;>\;1/2$ has the same optimal convergence rate for this error. The method clearly reveals the structure of global $L_{2}-norm$ error and is similarly applicable for evaluating the convergence rate of global uniform approximations.

INVARIANTS WITH RESPECT TO ALL ADMISSIBLE POLAR TOPOLOGIES

  • Cho, Min-Hyung;Hwang, Hong Taek
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.45-51
    • /
    • 1999
  • Let X and Y be topological vector spaces. For a sequence {$T_j$} of bounded operators from X into Y the $c_0$-multiplier convergence of ${\sum}T_j$ is an invariant on topologies which are stronger (need not strictly) than the topology of pointwise convergence on X but are weaker (need not strictly) than the topology of uniform convergence on bounded subsets of X.

  • PDF