• Title/Summary/Keyword: uniform column

Search Result 104, Processing Time 0.024 seconds

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.

Microbial Desulfurization of Coal by Iron-Oxidizing Bacteria Thiobacillus ferrooxidans in packed beds (철산화 박테리아 Thiobacillus ferrooxidans를 이용한 충전탑 반응기에서의 석탄의 생물학적 탈황)

  • 류희욱
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.124-130
    • /
    • 1999
  • To evaluate the technical of microbial coal desulfurization during the storage in coal dumps, microbial pyrite oxidation in a packed column reactor with Thiobacillus ferrooxidans has been investigated. For microbial desulfurization in a packed reactor system, coal particle size over 1.0 mm with uniform size distribution seems to be most suitable as fas as drainage behavior and accessability of pyrite are concerned. When coal samples of 1∼2 and 2∼4 mm particle size were size were used, about 32∼42% of pyritic sulfur was removed within 70 days. The rate of pyritic sulfur oxidation was in the range of 348∼803 mg S/kg coal ·d, and the sulfur removal rates in packed columns were about 15∼25% of those in suspension cultures. Without any circulation of liquid medium, microbial coal desulfurization could be possible by the inoculation of T. ferrooxidans along on the coal dump. It was concluded that a microbial percolation process is one of possible processes for the desulfurization of high sulfur coal during a long-term storage.

  • PDF

An Experimental Study on Parameter Estimation of Settling and Erosional Properties for Cohesive Sediments in Shihwa Lake (시화호 점착성 퇴적물의 침강.침식 특성 매개변수 산정에 대한 실험적 연구)

  • Ryu Hong-Ryul;Hwang Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.179-188
    • /
    • 2006
  • The purpose of this study is to quantitatively estimate the settling and erosional properties for cohesive sediments in Shihwa lake. Settling tests are conducted by multi-depth method using a specially designed 1.8 m tall settling column, and erosion tests are conducted with annular flume under the uniform bed condition. As result of settling tests, it is confirmed that the settling velocity of the cohesive sediments has the range of $0.002 for suspended sediments concentration of 0.1$0.19{\sim}0.55N/m^{2}$ for bed shear stress of $1.14{\sim}1.32g/cm^{3}$, and the erosion rate coefficient decreases with logarithmic function in a range of $18.4{\sim}3.9mg/cm^{2}{\cdot}hr$ with increase of bed shear stress.

High-Performance and Low-Complexity Decoding of High-Weight LDPC Codes (높은 무게 LDPC 부호의 저복잡도 고성능 복호 알고리즘)

  • Cho, Jun-Ho;Sung, Won-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.498-504
    • /
    • 2009
  • A high-performance low-complexity decoding algorithm for LDPC codes is proposed in this paper, which has the advantages of both bit-flipping (BF) algorithm and sum-product algorithm (SPA). The proposed soft bit-flipping algorithm requires only simple comparison and addition operations for computing the messages between bit and check nodes, and the amount of those operations is also small. By increasing the utilization ratio of the computed messages and by adopting nonuniform quantization, the signal-to-noise ratio (SNR) gap to the SPA is reduced to 0.4dB at the frame error rate of 10-4 with only 5-bit assignment for quantization. LDPC codes with high column or row weights, which are not suitable for the SPA decoding due to the complexity, can be practically implemented without much worsening the error performance.

Time dependent finite element analysis of steel-concrete composite beams considering partial interaction

  • Dias, Maiga M.;Tamayo, Jorge L.P.;Morsch, Inacio B.;Awruch, Armando M.
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.687-707
    • /
    • 2015
  • A finite element computer code for short-term analysis of steel-concrete composite structures is extended to study long-term effects under service loads, in the present work. Long-term effects are important in engineering design because they influence stress and strain distribution of the structural system and therefore contribute to the increment of deflections in these structures. For creep analysis, a rheological model based on a Kelvin chain, with elements placed in series, was employed. The parameters of the Kelvin chain were obtained using Dirichlet series. Creep and shrinkage models, proposed by the CEB FIP 90, were used. The shear-lag phenomenon that takes place at the concrete slab is usually neglected or not properly taken into account in the formulation of beam-column finite elements. Therefore, in this work, a three-dimensional numerical model based on the assemblage of shell finite elements for representing the steel beam and the concrete slab is used. Stud shear connectors are represented for special beam-column elements to simulate the partial interaction at the slab-beam interface. The two-dimensional representation of the concrete slab permits to capture the non-uniform shear stress distribution in the horizontal plane of the slab due to shear-lag phenomenon. The model is validated with experimental results of two full-scale continuous composite beams previously studied by other authors. Results are given in terms of displacements, bending moments and cracking patterns in order to shown the influence of long-term effects in the structural response and also the potentiality of the present numerical code.

Study of Radio Frequency Thawing for Cylindrical Pork Sirloin

  • Kim, Jinse;Park, Jong Woo;Park, Seokho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Han, Gui Jeung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.108-115
    • /
    • 2016
  • Purpose: Radio frequency (RF) heating is a promising thawing method, but it frequently causes undesirable problems such as non-uniform heating. This can occur because of the food shape, component distribution, and initial temperature differences between food parts. In this study, RF heating was applied to the thawing of cylindrically shaped pork sirloin by changing the shape of electrodes and the surrounding temperature. Methods: Curved electrodes were utilized to increase the thawing uniformity of cylindrically shaped frozen meat. Pork sirloin in the shape of a half-circle column was frozen in a deep freezer at $-70^{\circ}C$ and then thawed by RF heating with flat and curved electrodes. In order to prevent fast defrosting of the food surface by heat transfer from air to the food, the temperature of the thawing chamber was varied by -5, -10, and $-20^{\circ}C$. The temperature values of the frozen pork sirloin during RF thawing were measured using fiber-optic thermo sensors. Results: After multiple applications of curved electrodes resembling the food shape, and a cooled chamber at $-20^{\circ}C$ the half-cylindrically shaped meat was thawed without surface burning, and the temperature values of each point were similarly increased. However, with the parallel electrode, the frozen meat was partially burned by RF heating and the temperature values of center were overheated. The uniform heating rate and heat transfer prevention from air to the food were crucial factors for RF thawing. In this study, these crucial factors were accomplished by using a curved electrode and lowering the chamber temperature. Conclusions: The curved shape of the electrode and the equipotential surface calculated from the modeling of the parallel capacitor showed the effect of uniform heating of cylindrically shaped frozen food. Moreover, the low chamber temperature was effective on the prevention of the surface burning during RF thawing.

Experimental Curvature Analysis of Reinforced Concrete Piers with Lap-Spliced Longitudinal Steels subjected to Seismic Loading (지진하중을 받는 주철근 겹침이음된 철근콘크리트 교각의 곡률분석)

  • Chung, Young-Soo;Park, Chang-Kyu;Song, Hee-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.41-49
    • /
    • 2006
  • Through the 1982 Urahawa-ohi and the 1995 Kobe earthquakes, a number of bridge columns were observed to develop a flexural-shear failure due to the bond slip as a consequence of premature termination of the column longitudinal reinforcement. Because the seismic behavior of RC bridge piers is largely dependent on the performance of the plastic hinge legion of RC bridge piers, it is desirable that the seismic capacity of RC bridge pier is to evaluate as a curvature ductility. The provision for the lap splice of longitudinal steel was not specified in KHBDS(Korea Highway Bridge Design Specification) before the implementation of 1992 seismic design code, but the lap splice of not more than 50%, longitudinal reinforcement was newly allowed in the 2005 version of the KHBDS. The objective of this research is to investigate the distribution and ductility of the curvature of RC bridge column with the lap splice of longitudinal reinforcement in the plastic hinge legion. Six (6) specimens were made in 600 mm diameter with an aspect ratio of 2.5 or 3.5. These piers were cyclically subjected to the quasi-static loads with the uniform axial load of $P=0.1f_{ck}A_g$. According to the slip failure of longitudinal steels of the lap spliced specimen by cyclic loads, the curvatures of the lower and upper parts of the lap spliced region were bigger and smaller than the corresponding paris of the specimen without a lap splice, respectively. Therefore, the damage of the lap spliced test column was concentrated almost on the lower part of the lap spliced region, that appeared io be failed in flexure.

Reinforcement of the Structure Foundation using Grouting(C.G.S) (그라우팅(C.G.S)에 의한 구조물 기초 보강)

  • 천병식;김진춘;권형석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.1-11
    • /
    • 2000
  • The use of Compaction Grouting evolved in 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has been developed and is currently used in wide range of applications. Compaction Grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major applications of Compaction Grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other applications include preventing liquefation, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. In this paper, on the basis of the case history constructed in this year, a study has been performed to analyze the basic mechanism of the Compaction Grouting. Also, the effectiveness of the ground improvement and the bearing capacity of the Compaction Pile has been verified by the Cone Penetration Test(CPT) and Load Test. Relatively uniform Compaction grouting column could be maintained by planning the Quality Control in the course of grouting. And, the Quality Control Plan has been conceived using grout pressure, volume of grout and drilling depth.

  • PDF

Study of Chromium thin films deposited by DC magnetron sputtering under glancing angle deposition at low working pressure

  • Bae, Kwang-Jin;Ju, Jae-Hoon;Cho, Young-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.181.2-181.2
    • /
    • 2015
  • Sputtering is one of the most popular physical deposition methods due to their versatility and reproducibility. Synthesis of Cr thin films by DC magnetron sputtering using glancing angle deposition (GLAD) has been reported. Chromium thin films have been prepared at two different working pressure($2.0{\times}10-2$, 30, $3.3{\times}10-3torr$) on Si-wafer substrate using magnetron sputtering with glancing angle deposition (GLAD) technique. The thickness of Cr thin films on the substrate was adjusted about 1 mm. The electrical property was measured by four-point probe method. For the measurement of density in the films, an X-ray reflectivity (XRR) was carried out. The sheet resistance and column angle increased with the increase of glancing angle. However, nanohardness and density of Cr thin films decreased as the glancing angle increased. The measured density for the Cr thin films decreased from 6.1 to 3.8 g/cc as the glancing angle increased from $0^{\circ}$ to $90^{\circ}$ degree. The low density of Cr thin films is resulted from the isolated columnar structure of samples. The evolution of the isolated columnar structure was enhanced at the conditions of low sputter pressure and high glancing angle. This GLAD technique can be potentially applied to the synthesis of thin films requiring porous and uniform coating such as thin film catalysts or gas sensors.

  • PDF

A multilevel framework for decomposition-based reliability shape and size optimization

  • Tamijani, Ali Y.;Mulani, Sameer B.;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.467-486
    • /
    • 2017
  • A method for decoupling reliability based design optimization problem into a set of deterministic optimization and performing a reliability analysis is described. The inner reliability analysis and the outer optimization are performed separately in a sequential manner. Since the outer optimizer must perform a large number of iterations to find the optimized shape and size of structure, the computational cost is very high. Therefore, during the course of this research, new multilevel reliability optimization methods are developed that divide the design domain into two sub-spaces to be employed in an iterative procedure: one of the shape design variables, and the other of the size design variables. In each iteration, the probability constraints are converted into equivalent deterministic constraints using reliability analysis and then implemented in the deterministic optimization problem. The framework is first tested on a short column with cross-sectional properties as design variables, the applied loads and the yield stress as random variables. In addition, two cases of curvilinearly stiffened panels subjected to uniform shear and compression in-plane loads, and two cases of curvilinearly stiffened panels subjected to shear and compression loads that vary in linear and quadratic manner are presented.