• 제목/요약/키워드: unified analytical model

검색결과 37건 처리시간 0.021초

Free vibration analysis of a sandwich cylindrical shell with an FG core based on the CUF

  • Foroutan, Kamran;Ahmadi, Habib;Carrera, Erasmo
    • Smart Structures and Systems
    • /
    • 제30권2호
    • /
    • pp.121-133
    • /
    • 2022
  • An analytical approach for the free vibration behavior of a sandwich cylindrical shell with a functionally graded (FG) core is presented. It is considered that the FG distribution is in the direction of thickness. The material properties are temperature-dependent. The sandwich cylindrical shell with a FG core is considered with two cases. In the first model, i.e., Ceramic-FGM-Metal (CFM), the interior layer of the cylindrical shell is rich metal while the exterior layer is rich ceramic and the FG material is located between two layers and for the second model i.e., Metal-FGM-Ceramic (MFC), the material distribution is in reverse order. This study develops Carrera's Unified Formulation (CUF) to analyze sandwich cylindrical shell with an FG core for the first time. Considering the Principle of Virtual Displacements (PVDs) according to the CUF, the dependent boundary conditions and governing equations are obtained. The coupled governing equations are derived using Galerkin's method. In order to validate the present results, comparisons are made with the available solutions in the previous researches. The effects of different geometrical and material parameters on the free vibration behavior of a sandwich cylindrical shell with an FG core are examined.

Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells

  • Li, Haichao;Pang, Fuzhen;Du, Yuan;Gao, Cong
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.163-180
    • /
    • 2019
  • A semi analytical method is employed to analyze free vibration characteristics of uniform and stepped functionally graded circular cylindrical shells under complex boundary conditions. The analytical model is established based on multi-segment partitioning strategy and first-order shear deformation theory. The displacement functions are handled by unified Jacobi polynomials and Fourier series. In order to obtain continuous conditions and satisfy complex boundary conditions, the penalty method about spring technique is adopted. The solutions about free vibration behavior of functionally graded circular cylindrical shells were obtained by approach of Rayleigh-Ritz. To confirm the dependability and validity of present approach, numerical verifications and convergence studies are conducted on functionally graded cylindrical shells under various influencing factors such as boundaries, spring parameters et al. The present method apparently has rapid convergence ability and excellent stability, and the results of the paper are closely agreed with those obtained by FEM and published literatures.

Short-Channel MOSFET의 해석적 모델링 (Analytical modeling for the short-channel MOSFET)

  • 홍순석
    • 한국통신학회논문지
    • /
    • 제17권11호
    • /
    • pp.1290-1298
    • /
    • 1992
  • 본 논문은 fitting 파라미터를 배제하고 2차원적 Poisson 방정식을 도출해서 short-channel MOSFET의 model 식을 완전히 해석적으로 성립시켰다. 이로 인해 포화영역, 문턱전압, 강반전에 대한 것이 동시에 표현되는 정확한 드레인 전류가 유도되었다. 더욱이 이 model은 short-channel과 body효과, DIBL효과, 그리고 carrier운동에 대한 것도 설명할 수 있으며 온도와 $n^+$접합, 산화층에 관련되는 문턱전압도 표현할 수 있었다.

  • PDF

5층 철근콘크리트 중간모멘트골조의 비탄성 시간이력해석 (Inelastic Time History Analysis of a 5-Story Reinforced Concrete IMRF)

  • 강석봉;임병진
    • 한국지진공학회논문집
    • /
    • 제16권6호
    • /
    • pp.13-20
    • /
    • 2012
  • In this study, 5-story structures were designed in accordance with KBC2009 for inelastic time history analysis of RC IMRF. Bending moment-curvature relationship for beam and column was identified with fiber model and bending moment-rotation relationship for beam-column joint was calculated with simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The hysteretic behavior was simulated with three-parameter model suggested in IDARC program. The analytical results showed that the inelastic shear behavior of the joint could be neglected in the structural design for seismic design category C but the structure of category D did not satisfy the criteria of FEMA 356 for collapse prevention performance level.

Design procedure for prestressed concrete beams

  • Colajanni, Piero;Recupero, Antonino;Spinella, Nino
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.235-253
    • /
    • 2014
  • The theoretical basis and the main results of a design procedure, which attempts to provide the optimal layout of ordinary reinforcement in prestressed concrete beams, subjected to bending moment and shear force are presented. The difficulties encountered in simulating the actual behaviour of prestressed concrete beam in presence of coupled forces bending moment - shear force are discussed; particular emphasis is put on plastic models and stress fields approaches. A unified model for reinforced and prestressed concrete beams under axial force - bending moment - shear force interaction is provided. This analytical model is validated against both experimental results collected in literature and nonlinear numerical analyses. Finally, for illustrating the applicability of the proposed procedure, an example of design for a full-scale prestressed concrete beam is shown.

Spherical cavity expansion in overconsolidated unsaturated soil under constant suction condition

  • Wang, Hui;Yang, Changyi;Li, Jingpei
    • Geomechanics and Engineering
    • /
    • 제29권1호
    • /
    • pp.1-11
    • /
    • 2022
  • A semi-analytical solution to responses of overconsolidated (OC) unsaturated soils surrounding an expanding spherical cavity under constant suction condition is presented. To capture the elastoplastic hydro-mechanical property of OC unsaturated soils, the unified hardening (UH) model for OC unsaturated soil is adopted in corporation with a soil-water characteristic curve (SWCC) and two suction yield surfaces. Taking the specific volume, radial stress, tangential stress and degree of saturation as the four basic unknowns, the problem investigated is formulated by solving a set of first-order ordinary differential equations with the help of an auxiliary variable and an iterative algorithm. The present solution is validated by comparing with available solution based on the modified Cam Clay (MCC) model. Parametric studies reveal that the hydraulic and mechanical responses of spherical cavity expanding in unsaturated soils are not only coupled, but also affected by suction and overconsolidation ratio (OCR) significantly. More importantly, whether hydraulic yield will occur or not depends only on the initial relationship between suction yield stress and suction. The presented solution can be used for calibration of some insitu tests in OC unsaturated soil.

A simple and efficient 1-D macroscopic model for shape memory alloys considering ferro-elasticity effect

  • Damanpack, A.R.;Bodaghi, M.;Liao, W.H.;Aghdam, M.M.;Shakeri, M.
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.641-665
    • /
    • 2015
  • In this paper, a simple and efficient phenomenological macroscopic one-dimensional model is proposed which is able to simulate main features of shape memory alloys (SMAs) particularly ferro-elasticity effect. The constitutive model is developed within the framework of thermodynamics of irreversible processes to simulate the one-dimensional behavior of SMAs under uniaxial simple tension-compression as well as pure torsion+/- loadings. Various functions including linear, cosine and exponential functions are introduced in a unified framework for the martensite transformation kinetics and an analytical description of constitutive equations is presented. The presented model can be used to reproduce primary aspects of SMAs including transformation/orientation of martensite phase, shape memory effect, pseudo-elasticity and in particular ferro-elasticity. Experimental results available in the open literature for uniaxial tension, torsion and bending tests are simulated to validate the present SMA model in capturing the main mechanical characteristics. Due to simplicity and accuracy, it is expected the present SMA model will be instrumental toward an accurate analysis of SMA components in various engineering structures particularly when the ferro-elasticity is obvious.

공핍층 폭의 선형 변화를 가정한 단채널 MOSFET I-V 특성의 해석적 모형화 (Analytical Modeling for Short-Channel MOSFET I-V Characteristice Using a Linearly-Graded Depletion Edge Approximation)

  • 심재훈;임행삼;박봉임;여정하
    • 전자공학회논문지D
    • /
    • 제36D권4호
    • /
    • pp.77-85
    • /
    • 1999
  • 본 논문은 진성영역에서 공핍증 폭이 선형적으로 변화한다는 가정을 도입하고 전자이동도의 수평 및 수직 전계 이존성을 고려하여 단채널 MOSFET의 {{{{ { I-V }_{ } }}}} 특성에 대한 해석적 모형을 제시하였다. 이 모형으로부터 전 동작영역에 걸쳐 적용되는 문턱전압 방정식과 드레인전류 방정식을 도출하였다. 본 모형의 타당성을 검토하기 위하여 위 식들의 계산을 수행하였고, 그 결과 채널길이가 짧아짐에 따라 문턱전압이 지수함수적으로 감소하였으며, 아울러 채널길이변조, 채널이동로 열화 등을 본 모형에 의하여 일괄적으로 설명할 수 있었다.

  • PDF

가우시안 농도 분포를 갖는 PT-IGBT의 에미터 주입효율 (Emitter Injection Efficiency of Gaussian Impurity Distributions in PT-IGBT)

  • 김정희;최연익;정상구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.165-167
    • /
    • 2001
  • Emitter injection efficiency of p+/n-buffer Junction with Gaussian impurity distribution is presented. This model takes into account the variation of the carrier lifetime with injection level which allows a unified interpretation of the injection efficiency for all injection level. The injected carrier density and injection efficiency of the anode are calculated as a function of the current density with the low level lifetime as a parameter for different thicknesses of the anode. The analytical results agree well with simulation.

  • PDF

A unified formulation for modeling of inhomogeneous nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.369-377
    • /
    • 2018
  • In this article, buckling and free vibration of functionally graded (FG) nanobeams resting on elastic foundation are investigated by developing various higher order beam theories which capture shear deformation influences through the thickness of the beam without the need for shear correction factors. The elastic foundation is modeled as linear Winkler springs as well as Pasternak shear layer. The material properties of FG nanobeam are supposed to change gradually along the thickness through the Mori-Tanaka model. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. From Hamilton's principle, the nonlocal governing equations of motion are derived and then solved applying analytical solution. To verify the validity of the developed theories, the results of the present work are compared with those available in literature. The effects of shear deformation, elastic foundation, gradient index, nonlocal parameter and slenderness ratio on the buckling and free vibration behavior of FG nanobeams are studied.