• 제목/요약/키워드: uniaxial strain

검색결과 507건 처리시간 0.026초

Rate-Dependence of Off-Axis Tensile Behavior of Cross-Ply CFRP Laminates at Elevated Temperature and Its Simulation

  • Takeuchi, Fumi;Kawai, Masamichi;Zhang, Jian-Qi;Matsuda, Tetsuya
    • Advanced Composite Materials
    • /
    • 제17권1호
    • /
    • pp.57-73
    • /
    • 2008
  • The present paper focuses on experimental verification of the ply-by-ply basis inelastic analysis of multidirectional laminates. First of all, rate dependence of the tensile behavior of balanced symmetric cross-ply T800H/epoxy laminates with a $[0/90]_{3S}$ lay-up under off-axis loading conditions at $100^{\circ}C$ is examined. Uniaxial tension tests are performed on plain coupon specimens with various fiber orientations $[{\theta}/(90-{\theta})]_{3S}$ ($\theta$ = 0, 5, 15, 45 and $90^{\circ}C$) at two different strain rates (1.0 and 0.01%/min). The off-axis stress.strain curves exhibit marked nonlinearity for all the off-axis fiber orientations except for the on-axis fiber orientations $\theta$ = 0 and $90^{\circ}$, regardless of the strain rates. Strain rate has significant influences not only on the off-axis flow stress in the regime of nonlinear response but also on the apparent off-axis elastic modulus in the regime of initial linear response. A macromechanical constitutive model based on a ply viscoplasticity model and the classical laminated plate theory is applied to predictions of the rate-dependent off-axis nonlinear behavior of the cross-ply CFRP laminate. The material constants involved by the ply viscoplasticity model are identified on the basis of the experimental results on the unidirectional laminate of the same carbon/epoxy system. It is demonstrated that good agreements between the predicted and observed results are obtained by taking account of the fiber rotation induced by deformation as well as the rate dependence of the initial Young's moduli.

Evaluation of constitutive relations for concrete modeling based on an incremental theory of elastic strain-hardening plasticity

  • Kral, Petr;Hradil, Petr;Kala, Jiri
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.227-237
    • /
    • 2018
  • Today, the modeling of concrete as a material within finite element simulations is predominantly done through nonlinear material models of concrete. In current sophisticated computational systems, there are a number of complex concrete material models which are based on theory of plasticity, damage mechanics, linear or nonlinear fracture mechanics or combinations of those theories. These models often include very complex constitutive relations which are suitable for the modeling of practically any continuum mechanics tasks. However, the usability of these models is very often limited by their parameters, whose values must be defined for the proper realization of appropriate constitutive relations. Determination of the material parameter values is very complicated in most material models. This is mainly due to the non-physical nature of most parameters, and also the large number of them that are frequently involved. In such cases, the designer cannot make practical use of the models without having to employ the complex inverse parameter identification process. In continuum mechanics, however, there are also constitutive relations that require the definition of a relatively small number of parameters which are predominantly of a physical nature and which describe the behavior of concrete very well within a particular task. This paper presents an example of such constitutive relations which have the potential for implementation and application in finite element systems. Specifically, constitutive relations for modeling the plane stress state of concrete are presented and subsequently tested and evaluated in this paper. The relations are based on the incremental theory of elastic strain-hardening plasticity in which a non-associated flow rule is used. The calculation result for the case of concrete under uniaxial compression is compared with the experimental data for the purpose of the validation of the constitutive relations used.

Dynamic failure features and brittleness evaluation of coal under different confining pressure

  • Liu, Xiaohui;Zheng, Yu;Hao, Qijun;Zhao, Rui;Xue, Yang;Zhang, Zhaopeng
    • Geomechanics and Engineering
    • /
    • 제30권5호
    • /
    • pp.401-411
    • /
    • 2022
  • To obtain the dynamic mechanical properties, fracture modes, energy and brittleness characteristics of Furong Baijiao coal rock, the dynamic impact compression tests under 0, 4, 8 and 12 MPa confining pressure were carried out using the split Hopkinson pressure bar. The results show that failure mode of coal rock in uniaxial state is axial splitting failure, while it is mainly compression-shear failure with tensile failure in triaxial state. With strain rate and confining pressure increasing, compressive strength and peak strain increase, average fragmentation increases and fractal dimension decreases. Based on energy dissipation theory, the dissipated energy density of coal rock increases gradually with growing confining pressure, but it has little correlation with strain rate. Considering progressive destruction process of coal rock, damage variable was defined as the ratio of dissipated energy density to total absorbed energy density. The maximum damage rate was obtained by deriving damage variable to reflect its maximum failure severity, then a brittleness index BD was established based on the maximum damage rate. BD value declined gradually as confining pressure and strain rate increase, indicating the decrease of brittleness and destruction degree. When confining pressure rises to 12 MPa, brittleness index and average fragmentation gradually stabilize, which shows confining pressure growing cannot cause continuous damage. Finally, integrating dynamic deformation and destruction process of coal rock and according to its final failure characteristics under different confining pressures, BD value is used to classify the brittleness into four grades.

Investigation on physical and mechanical properties of manufactured sand concrete

  • Haoyu Liao;Zongping Chen;Ji Zhou;Yuhan Liang
    • Advances in concrete construction
    • /
    • 제16권4호
    • /
    • pp.177-188
    • /
    • 2023
  • In the context of the shortage of river sand, two types of manufactured sand (MS) were used to partially replace river sand (RS) to design manufactured sand concrete (MSC). A total of 81 specimens were designed for uniaxial compression test and beam flexure test. Two parameters were considered in the tests, including the types of MS (i.e. limestone manufactured sand (LMS), pebble manufactured sand (PMS)) and the MS replacement percentage (i.e., 0%, 25%, 50%, 75%, 100%). The stress-strain curves of MSC were obtained. The effects of these parameters on the compressive strength, elastic modulus, peak strain, toughness and flexural strength were discussed. Additionally, the sensitivity of particle size distributions to the performance of MSC was evaluated based on the grey correlation analysis. The results showed that compared with river sand concrete (RSC), the rising slope of the stress-strain curves of limestone manufactured sand concrete (LMSC) and pebble manufactured sand concrete (PMSC) were higher, the descending phrase of LMSC were gentle but that of PMSC showed an opposite trend. The physical and mechanical properties of MSC were affected by the MS replacement percentage except the compressive strength of PMSC. When the replacement percentage of LMS and PMS were 50% and 25% respectively, the corresponding performances of LMSC and PMSC were better. In generally, when the replacement percentage of LMS and PMS were same, the comprehensive performance of LMSC were better than that of PMSC. The constitutive model and the equations for mechanical properties were proposed. The influence of particle ranging from 0.15 mm to 0 mm on the performance of MSC was lower than particle ranging from 4.75 mm to 0.15 mm but this influence should not be ignored.

Parameter calibrations and application of micromechanical fracture models of structural steels

  • Liao, Fangfang;Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.153-174
    • /
    • 2012
  • Micromechanical facture models can be used to predict ductile fracture in steel structures. In order to calibrate the parameters in the micromechanical models for the largely used Q345 steel in China, uniaxial tensile tests, smooth notched tensile tests, cyclic notched bar tests, scanning electron microscope tests and finite element analyses were conducted in this paper. The test specimens were made from base metal, deposit metal and heat affected zone of Q345 steel to investigate crack initiation in welded steel connections. The calibrated parameters for the three different locations of Q345 steel were compared with that of the other seven varieties of structural steels. It indicates that the toughness index parameters in the stress modified critical strain (SMCS) model and the void growth model (VGM) are connected with ductility of the material but have no correlation with the yield strength, ultimate strength or the ratio of ultimate strength to yield strength. While the damage degraded parameters in the degraded significant plastic strain (DSPS) model and the cyclic void growth model (CVGM) and the characteristic length parameter are irrelevant with any properties of the material. The results of this paper can be applied to predict ductile fracture in welded steel connections.

복합재 적층판의 자유단 층간분리의 평가 (Evaluation of Free-Edge Delamination in Composite Laminates)

  • 김인권;공창덕;방조혁
    • Composites Research
    • /
    • 제14권1호
    • /
    • pp.8-14
    • /
    • 2001
  • 복합재 적층판의 자유단 층간분리의 모드별 변형률 에너지 해방률을 구하는 간이 계산법을 제안하였다. 층간응력은 층간에서의 평형식으로부터 층간의멘트와 층간전단력으로 평가하였다. 적층판 자유단 층간분리의 변형은 일반화된 준3차원 고전적층이론에 의하여 계산하였다. 이 간이 계산법은 변형균 에너지 해방률의 세성분을 구하는 간편한 식으로 나타내었다 복합재 적층판이 일축인장을 받는 경우에 대하여 적층판 중앙면에 대칭과 비대칭인 층간분리가 발생한 경우에 대하여 해석을 행하였다. 해석결과는 가상분리진전법에 의한 유한요소해석결과와 잘 일치하였다.

  • PDF

온도와 재령이 콘크리트의 동탄성계수와 정탄성계수의 상관관계에 미치는 영향 (Effect of Temperature and Aging on the Relationship between Dynamic and Static Elastic Modulus of Concrete)

  • 한상훈;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.445-450
    • /
    • 2001
  • The paper investigates the relationships between dynamic elastic modulus and static elastic modulus or compressive strength according to curing temperature, aging, and cement type. Based on this investigation, the new model equations are proposed. Impact echo method estimates the resonant frequency of specimens and uniaxial compression test measures the static elastic modulus and compressive strength. Type I and V cement concretes, which have the water-cement ratios of 0.40 and 0.50, are cured under the isothermal curing temperature of 10, 23, and 50 $^{\circ}C$. Cement type and aging have no large influence on the relationship between dynamic and static elastic modulus, but the ratio of dynamic and static elastic modulus comes close to 1 as temperature increases. Initial chord elastic modulus, which is calculated at lower strain level of stress-strain curve, has the similar value to dynamic elastic modulus. The relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus. The proposed relationship equations between dynamic elastic modulus and static elastic modulus or compressive strength properly estimates the variation of relationships according to cement type, temperature, and aging.

  • PDF

크리프 파단 데이터의 변동성에 대한 새로운 고찰과 수명예측 (New Considerations on Variability of Creep Rupture Data and Life Prediction)

  • 정원택;공유식;김선진
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1119-1124
    • /
    • 2009
  • This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and $700^{\circ}C$ elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in the creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time (RT) and steady state creep rate (SSCR) on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model.

마이크로 역학과 레올로지 제어에 의한 고인성 섬유복합재료 ECC(Engineered Cementitious Composite)의 다양한 타설 공정 구현 (Facilitation of the Diverse Processing of High Ductile ECC (Engineered Cementitious Composite) Based on Micromechanics and Rheological Control)

  • 김윤용;김정수
    • 한국농공학회논문집
    • /
    • 제47권5호
    • /
    • pp.27-39
    • /
    • 2005
  • In the recent design of high ductile fiber-reinforced ECC (engineered cementitious composite), optimizing both processing and mechanical properties for specific applications is critical. This study presents an innovative method to develop new class ECCs, which possess the different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or shotcrete processing) while maintaining ductile hardened properties. In the material design concept, we employ a parallel control of fresh and hardened properties by using micromechanics and cement rheology. Control of colloidal interaction between the particles is regarded as a key factor to allow the performance of the specific processing. To determine how to control the particle interactions and the viscosity of cement suspension, we first introduce two chemical admixtures including a highly charged polyelectrolyte and a non-ionic polymer. Optimized mixing steps and dosages we, then, obtained within the solid concentration predetermined based on micromechanical principle. Test results indicate that the rheological properties altered by this approach were revealed to be highly effective in obtaining the desired function of the fresh ECC, allowing us to readily achieve hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension.

BSCCO 고온초전도 선재의 접합특성 연구 (A Study of Joint Characteristic of BSCCO Superconductor Tape)

  • 김정호;김중석;김태우;지봉기;주진호;나완수
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.378-382
    • /
    • 1999
  • We evaluated the effect of joining process such as contact method, shape of joined area and pressure on the electrical property of Bi-2223 superconducting tape. It was observed that the current capacity was reduced at the transition area of the joined tape and was significantly dependent on the uniaxial pressure. The lap-joined tape, fabricated with a pressure of 1,000-1,600 MPa, show the highest value of current capacity(80-90%) of the tape itself. It is believed the highest value of current capacity results from improvement in core density, contacting area and grain alignment, etc. In addition, the irreversible strain( ${\varepsilon}$ irrev) for the joined tape· was measured to be 0.1%, smaller than that of enjoined tape( ${\varepsilon}$ irrev = 0.3%). The decrease in the strength and irreversible strain for joined tape is believed to be due to the irregular geometry/morphology of the transition area of the tape.

  • PDF