• 제목/요약/키워드: uniaxial strain

검색결과 507건 처리시간 0.031초

Design-oriented strength and strain models for GFRP-wrapped concrete

  • Messaoud, Houssem;Kassoul, Amar;Bougara, Abdelkader
    • Computers and Concrete
    • /
    • 제26권3호
    • /
    • pp.293-307
    • /
    • 2020
  • The aim of this paper is to develop design-oriented models for the prediction of the ultimate strength and ultimate axial strain for concrete confined with glass fiber-reinforced polymer (GFRP) wraps. Twenty of most used and recent design-oriented models developed to predict the strength and strain of GFRP-confined concrete in circular sections are selected and evaluated basing on a database of 163 test results of concrete cylinders confined with GFRP wraps subjected to uniaxial compression. The evaluation of these models is performed using three statistical indices namely the coefficient of the determination (R2), the root mean square error (RMSE), and the average absolute error (AAE). Based on this study, new strength and strain models for GFRP-wrapped concrete are developed using regression analysis. The obtained results show that the proposed models exhibit better performance and provide accurate predictions over the existing models.

Deformation behaviours of SS304 tubes in pulsating hydroforming processes

  • Yang, Lianfa;Wang, Ninghua;He, Yulin
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.91-110
    • /
    • 2016
  • Tube hydroforming (THF) under pulsating hydraulic pressures is a novel technique that applies pulsating hydraulic pressures that are periodically increased to deform tubular materials. The deformation behaviours of tubes in pulsating THF may differ compared to those in conventional non-pulsating THF due to the pulsating hydraulic pressures. The equivalent stress-strain relationship of metal materials is an ideal way to describe the deformation behaviours of the materials in plastic deformation. In this paper, the equivalent stress-strain relationships of SS304 tubes in pulsating hydroforming are determined based on experiments and simulation of free hydraulic bulging (FHB), and compared with those of SS304 tubes in non-pulsating THF and uniaxial tensile tests (UTT). The effect of the pulsation parameters, including amplitude and frequency, on the equivalent stress-strain relationships is investigated to reveal the plastic deformation behaviours of tubes in pulsating hydroforming. The results show that the deformation behaviours of tubes in pulsating hydroforming can be well described by the equivalent stress-stain relationship obtained by the proposed method. The amplitude and frequency of pulsating hydraulic pressure have distinct effects on the equivalent stress-strain relationships-the equivalent stress becomes augmented and the formability is enhanced with the increase of the pulsation amplitude and frequency.

Prediction of Strain Energy Function for Butyl Rubbers (부틸고무의 변형률 에너지 함수 예측)

  • Kim Nam-Woong;Kim Kug-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제30권10호
    • /
    • pp.1227-1234
    • /
    • 2006
  • Up to now, several mathematical theories based on strain energy functions have been developed for rubber materials. These theories, coupled with the finite element method, can be used very effectively by engineers to analyze and design rubber components. However, due to the complexities of the mathematical formulations and the lack of general guidelines available fur the analysis of rubber components, it is a formidable task for an engineer to analyze rubber components. In this paper a method for predicting strain energy functions - Neo-Hookean model and Mooney-Rivlin model - from the hardness using the empirical equation without any experiment is discussed. First based on the elasticity theories of rubber, the relation between stress and strain is defined. Then for the butyl rubbers, the model constants of Neo-Hookean model and Mooney-Rivlin model are calculated from uniaxial tension tests. From the results, the usefulness of the empirical equation to estimate elastic modulus from hardness is confirmed and, fur Mooney-Rivlin model, the predicted and the experimental model constants are compared and discussed.

Numerical Approach Technique of Spherical Indentation for Material Property Evaluation of Hyper-elastic Rubber (초탄성 고무 물성평가를 위한 구형 압입시험의 수치접근법)

  • Lee, Hyung-Yil;Lee, Jin-Haeng;Kim, Dong-Wook
    • Elastomers and Composites
    • /
    • 제39권1호
    • /
    • pp.23-35
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are first examined via finite element (FE) analyses. An optimal data acquisition spot is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/compression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve.

A Study of the Influence of Strain Gauge Location and Contact Conditions by Loading Platens on the Mechanical Behavior of Rock Specimens (암석공시체의 역학적 거동 해석에 미치는 변형율게이지 위치 및 단면구속 영향에 대한 연구)

  • 정교철
    • The Journal of Engineering Geology
    • /
    • 제8권3호
    • /
    • pp.215-224
    • /
    • 1998
  • In this study, total strain was measured by LVDTs and local strains on the surface of specimens were measured by strain gauges. And axi-symmetrically elastoplastic FEM analyses was carried out for cylindrical specimens. Considering the influence of the restraint induced by the loading platen, in the case of H/D=1, the strain distribution on the side of a specimen is obviously affected by the condition of platen contact. Furthermore, it is clear that the larger H/D ratio becomes, the smaller the influence to the strain distribution is. For the smooth contact condition, the strain on the side is not influenced by the stiffness of the specimen, the shape and the scale effect, the strain distribution coincides with the nominal total strain. Whereas, in the case of rough contact condition, the strain distribution is remarkably affected. It is made clear that strain responses of hard rock specimens may more sensitive than these of soft rock specimens as a results of interaction between loading platens and specimen and the uniaxial strength of specimens may strongly depends on this interaction and stress-strain relation is affected by the contact condition.

  • PDF

Anisotropic Continum Damage-Plastic Model for Concrete (콘크리트의 이방성 손상-소성 모델)

  • 변근주;송하원;이기성;김종우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.91-96
    • /
    • 1994
  • The growth and propagation of microcracks existed in concrete cause failure of concrete. This is called "damage". The concepts of two principles, equivalent strain principle and equivalent energy principle, are reviewed and compared in the case of uniaxial compressior to concrete. The damage evolution law and constitutive equation are derived by using the Helmholz free energy and the dissipation potential by means of the thermodynamic principles.rinciples.

  • PDF

Formulation of Special Constitutive Equations for Inelastic Responses of Porous Metals (I) - Elastic, Perfectly Plastic Material - (다공질 금속의 비탄성거동을 위한 특수 구성방정식의 형성 I)

  • 김기태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제11권6호
    • /
    • pp.975-981
    • /
    • 1987
  • Employing a speical yield function for porous metals, a set of special constitutive equations is formulated to predict elastic-plastic responses of porous metals under triaxial compression. The proposed contitutive equations are compared with experimental data for porous tungsten under hydrostatic compression and uniaxial strain compression.

Study of anisoptopy of sheet metals (압연강판의 이방성에 관한 연구)

  • 인정제
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.153.1-156
    • /
    • 1999
  • Based upon the experimental data from multi-stage tensile loading at angles to the rolling direction of steel sheets, anisotropic hardening rules are proposed. Experiments show that orthotropic anisotropy is maintained and the orientations of orthotropy axes are changed during tensile loading. A phenomenological model is proposed which includes the rotations of orthotropy axes, work hardening and kinematic hardening. Using the model, uniaxial tensile stress, R-value and tensile necking strain are predicted and compared with the experimental data.

  • PDF

Forming Limit of Mash-seam Welded Sheets (매쉬-심 용접 판재의 성형 한계)

  • 김형목;허영무;양대호;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.222-225
    • /
    • 1997
  • This paper describes experimental investigation on the forming limit for mash-seam welded sheets. The uniaxial tensile test was conducted to evaluate the mechanical properties of weld bead. Experimental forming limit diagrams were investigated for the different thicknesses and properties of welded sheets.

  • PDF

Three-Dimensional Crystallizing $\pi$-Bondings and Creep of Metals

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.238-251
    • /
    • 1995
  • Creep of metals has been explained conventionally by dislocation climb and grain boundary sliding indiffusion controlled process. The reorienations of the atoms in the grain by three dimensional crystallizing $\pi$-bondings are visualized as grain rotatins during slow deformation, fold formatin at triple point, increased crevice dspace between grains. grain boundary sliding, grain boundary micration and formation of cracks at the grain boundaries . And also the rupture time and average creep strain rate are explained by the three-dimensional crystallizing $\pi$- bondings and they can be determined by uniaxial tensile test.

  • PDF