• Title/Summary/Keyword: uniaxial load

Search Result 304, Processing Time 0.025 seconds

Behaviors of Thick Antisymmetric Angle-Ply Laminate Using the Affine Transformation (유사 변환을 이용한 역대칭 앵글 플라이 적층 후판의 거동)

  • 이영신;양명석;나문수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.28-40
    • /
    • 1991
  • Affine transformation was used to analyze the bending, buckling and vibration behaviors of a thick antisymmetric angle-ply rectangular simply supported laminate. Introducing the generalized parameters, the comprehensive solutions are found. The generalized parameters are a generalized rigidity ratio ( $D^*1), a generalized Poisson's ratio (.epsilon.) and a principal rigidity ratio (.alpha.). Hence, the transverse deflection decreases, the uniaxial buckling load and the fundamental frequency increase with increasing $D^*1 and decreasing .alpha., but the effect of .epsilon. is negligible. With decreasing the thickness ratio, the results by the classical plate theory are more erroneous. The transverse deflection is minimum, the uniaxial buckling load and the fundamental frequency are maximum if the fiber angle is 45.deg., and number of plies is more than 4. The time and efforts can be saved to understand the behaviors of composite laminates because these results can be applied to another composite material easily.sily.

Influence of Biaxial Loads on Impact Fracture of High-Strength Membrane Materials

  • Kumazawa, Hisashi;Susuki, Ippei;Hasegawa, Osamu;Kasano, Hideaki
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.395-413
    • /
    • 2009
  • Impact tests on high-strength membrane materials under biaxial loads were experimentally conducted in order to evaluate influence of biaxial loads on impact fracture of the membrane materials for the inflated applications. Cruciform specimens of the membrane materials were fabricated for applying biaxial loadings during the impact test. A steel ball was shot using a compressed nitrogen gas gun, and struck the membrane specimen. Impact tests on uniaxial strip specimens were also conducted to obtain the effect of specimen configuration and boundary condition on the impact fracture. The results of the measured crack length and the ultra-high speed photographs indicate the impact fracture properties of the membrane fabrics under biaxial loadings. Crack length due to the impact increased with applied tensile load, and the impact damages of the cruciform membrane materials under biaxial loadings were smaller than those of under uniaxial loadings. Impact fracture of the strip specimen was more severe than that of the cruciform specimen due to the difference of boundary conditions.

Case Study of Rock Mass Classifications in Slopes (절취사면의 암질평가사례)

  • Shin, Hee-Soon;Han, Kong-Chang;Sunwoo, Choon;Song, Won-Kyong;Synn, Joong-Ho;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.109-116
    • /
    • 2000
  • Rippability refers to the ease of excavation by construction equipment. Since it is related to rock quality in terms of hardness and fracture density, which may be measured by seismic refraction surveys, correlations have been made between rippability and seismic P wave velocities. The 1-channel signal enhancement seismograph(Bison, Model 1570C) was used to measure travel time of the seismic wave through the ground, from the source to the receiver. The seismic velocity measurement was conducted with 153 lines at 5 rock slopes of Chungbuk Youngdong area. Schmidt rebound hardness test were conducted with 161 points on rock masses and the point load test also on 284 rock samples. The uniaxial compressive strength and seismic wave velocity of 60 rock specimens were measured in laboratory. These data were used to evaluate the rock quality of 5 rock slopes.

  • PDF

Fracture Behavior and Stress Distribution around Slot (슬롯주위 의 應力分布 와 破壞擧動 1)

  • 송삼홍;고성위
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.127-132
    • /
    • 1984
  • In this paper, stress concentration factor and distribution of slotted or notched plate which is subjected to uniaxial tensile load are studied. The experimental measurements have shown the following; (1)The stress around slot or notch of slotted or notched plate which is subjected to uniaxial tensile load is state of biaxial stress, which is mainly varied to notch radius and depth. (2)The stress concentration factor around slot or notch is mainly influenced by the .sigma.$_{yy}$ , it is varied with notch radius and depth. (3)For the notched specimen, there is a notch depth where stress concentration factor is maximum. On the other hand, for the slotted specimen, stress concentration factor increases as the notch depth increases. An investigation of the relationship between fracture and stress concentration factor due to the slot or notch will be presented on the later paper, for reference.

Los Angeles Abrasion Test for Estimating Engineering Index on the Sedimentary Rocks of Kyeongsang Basin (퇴적암의 공학지수를 추정하기 위한 L. A. 마모율 시험)

  • Min, Tuk-Ki;Moon, Jong-Kyu;Lee, Sang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.15-26
    • /
    • 2007
  • Los Angeles abrasion loss test has usally been applied to the quarry for the purpose of aggregate hardness estimation. 324 blocks from 25 sites of Kyeongsang basin samples of sedimentary rock were examined and tested in laboratary. This paper found that L. A. abrasion loss test is a good method to estimate engineering index such as uniaxial compressive strength, elastic modulus, indirect tensile strength, point load strength index, Schmidt hammer rebound value of sedimentary rocks with high correlation factor. Engineers will prefer L. A. abrasion loss test to the other one for design and construction as this method is quick and easy.

Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components (고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구)

  • Kim, Wan-Doo;Kim, Wan-Soo;Kim, Dong-Jin;Woo, Chang-Soo;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

A Study on Small Punch-Creep Test Using Finite Element Analysis II (유한요소해석을 이용한 소형펀치-크리프 시험에 관한 연구 (II) - SP-Creep 시험과 일축 크리프 시험의 상관성을 중심으로 -)

  • Lee, Song-In;Kwon, Il-Hyun;Kim, Yon-Jig;Ahn, Byung-Guk;Ahn, Haeng-Keun;Baek, Seung-Se;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.111-116
    • /
    • 2001
  • Small punch-creep(SP-Creep) test technique has been applied for evaluating the creep characteristics for high temperature materials. However, in order to evaluate the damage and predict the remaining life, it is necessary to establish a quantitative correlation between SP-Creep and uniaxial-creep test results. This paper presents analytical and experimental results of useful correlation between SP-Creep and uniaxial-creep properties for 9Cr1MoVNb steel at $600{\sim}650^{\circ}C$ in terms of stress(load) and activation energy during creep deformation. Especially, the activation energy obtained from SP-Creep test is linearly related to that from uniaxial-creep test at $650^{\circ}C$ as follows: $Q_{sp-p}{\fallingdotseq}1.37\;Q_{TEN},\;Q_{sp-{\sigma}}{\fallingdotseq}1.53\;Q_{TEN}$.

  • PDF

Small Punch Creep Behavior Analysis for Assessment of Creep Properties (크리프 물성 평가를 위한 소형 펀치 크리프 해석)

  • Im, Jiwoo;Kim, Bum-Joon;Kim, Moon-K;Lim, Byeong-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.965-973
    • /
    • 2010
  • The small punch creep (SPC) test has recently received much attention as a new alternative to the conventional uniaxial creep test because it needs only a miniature-sized specimen directly detached from an operating system or component without any serious sampling damages. However, it is difficult to obtain the equivalent uniaxial creep data directly from the SPC data. As a specimen is deformed by a punch in the SPC test, the test result is sensitive to the friction between them. Finite element analyses with various friction coefficients was performed and showed a tendency of increased SPC life with an increased friction coefficient. The necking position predicted by the SPC simulation with a proper friction coefficient showed good agreement with that observed from the real SPC test. Finally, a noble method to convert the SPC load and displacement rate into the equivalent uniaxial creep stress and strain rate, respectively, was established in this study.

Mechanical behavior of sandstones under water-rock interactions

  • Zhou, Kunyou;Dou, Linming;Gong, Siyuan;Chai, Yanjiang;Li, Jiazhuo;Ma, Xiaotao;Song, Shikang
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.627-643
    • /
    • 2022
  • Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.

Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (I) - Boiler Superheater Tube - (SP-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(I) - 보일러 과열기 튜브 -)

  • Baek, Seung-Se;Na, Seong-Hun;Na, Ui-Gyun;Yu, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1995-2001
    • /
    • 2001
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen(10${\times}$10${\times}$0.5mm) is described to develop the new creep test method for high temperature structural materials. The SP-Creep test is applied to 2.25Cr-lMo(STBA24) steel which is widely used as boiler tube material. The test temperatures applied for the creep deformation of miniaturized specimens are between 550∼600$^{\circ}C$. The SP-Creep curves depend definitely on applied load and creep temperature, and show the three stages of creep behavior like in conventional uniaxial tensile creep curves. The load exponent of miniaturized specimen decreases with increasing test temperature, and its behavior is similar to stress exponent behavior of uniaxial creep test. The creep activation energy obtained from the relationship between SP-Creep rate and test temperature decreases as the applied load increases. A predicting equation or SP-Creep rate for 2.25Cr-lMo steel is suggested. and a good agreement between experimental and calculated data has been found.