• Title/Summary/Keyword: unfolding protein

Search Result 53, Processing Time 0.03 seconds

Misfolding-assisted Selection of Stable Protein Variants Using Phage Displays

  • Shin, Jong-Shik;Ryu, Seung-Hyun;Lee, Cheol-Ju;Yu, Myeong-Hee
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.55-60
    • /
    • 2006
  • We describe a phage display strategy, based on the differential resistance of proteins to denaturant-induced unfolding, that can be used to select protein variants with improved conformational stability. To test the efficiency of this strategy, wild-type and two stable variants of ${\alpha}_1$-antitrypsin (${\alpha}_1AT$) were fused to the gene III protein of M13 phage. These phages were incubated in unfolding solution containing denaturant (urea or guanidinium chloride), and then subjected to an unfavorable refolding procedure (dialysis at $37^{\circ}C$). Once the ${\alpha}_1AT$ moiety of the fusion protein had unfolded in the unfolding solution, in which the denaturant concentration was higher than the unfolding transition midpoint ($C_m$) of the ${\alpha}_1AT$ variant, around 20% of the phage retained binding affinity to anti-${\alpha}_1AT$ antibody due to a low refolding efficiency. Moreover, this affinity reduced to less than 5% when 10 mg/mL skimmed milk (a misfolding-promoting additive) was included during the unfolding/refolding procedure. In contrast, most binding affinity (>95%) remained if the ${\alpha}_1AT$ variant was stable enough to resist unfolding. Because this selection procedure does not affect the infectivity of M13, the method is expected to be generally applicable to the high-throughput screening of stable protein variants, when activity-based screening is not possible.

Unfolded Histidine-Tagged Protein is Immobilized to Nitrilotriacetic Acid-Nickel Beads, But Not the Nickel-Coated Glass Slide

  • Cho Min-Ho;Ahn Sun-Young;Park Heon-Yong
    • Genomics & Informatics
    • /
    • v.4 no.3
    • /
    • pp.133-136
    • /
    • 2006
  • The adsorption of proteins on the surface of glass slides is essential for construction of protein chips. Previously, we prepared a nickel-coated plate by the spin-coating method for immobilization of His-tagged proteins. In order to know whether the structural factor is responsible for the immobilization of His-tagged proteins to the nickel-coated glass slide, we executed a series of experiments. First we purified a His-tagged protein after expressing the vector in E. coli BL21 (DE3). Then we obtained the unfolding curve for the His-tagged protein by using guanidine hydrochloride. Fractions unfolded were monitored by internal fluorescence spectroscopy. The ${\Delta}G_{H20}$ for unfolding was $2.27kcal/mol{/pm}0.52$. Then we tested if unfolded His-tagged proteins can be adsorbed to the nickel-coated plate, comparing with $Ni^{2+}-NTA$ (nitrilotriacetic acid) beads. Whereas unfolded His-tagged proteins were adsorbed to $Ni^{2+}-NTA$ beads, they did not bind to the nickel-coated plate. In conclusion, a structural factor is likely to be an important factor for constructing the protein chips, when His-tagged proteins will immobilize to the nickel-coated slides.

Advances in Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS)-Based Techniques for Elucidating Higher-Order Protein Structures

  • Seo, Jongcheol
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.65-70
    • /
    • 2020
  • Despite its great success in the field of proteomics, mass spectrometry has limited use for determining structural details of peptides, proteins, and their assemblies. Emerging ion mobility spectrometry-mass spectrometry has enabled us to explore the conformational space of protein ions in the gas phase, and further combinations with the gas-phase ion spectroscopy and the collision-induced unfolding have extended its abilities to elucidating the secondary structure and local details of conformational transitions. This review will provide a brief introduction to the combined approaches of IMS-MS with gas-phase ion infrared spectroscopy or collision-induced unfolding and their most recent results that successfully revealed higher-order structural details.

Unfolding of Ervatamin C in the Presence of Organic Solvents: Sequential Transitions of the Protein in the O-state

  • Sundd, Monica;Kundu, Suman;Dubey, Vikash Kumar;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.586-596
    • /
    • 2004
  • The folding of ervatamin C was investigated in the presence of various fluorinated and non-fluorinated organic solvents. The differences in the unfolding of the protein in the presence of various organic solvents and the stabilities of O-states were interpreted. At pH 2.0, non-fluorinated alkyl alcohols induced a switch from the native $\alpha$-helix to a $\beta$-sheet, contrary to the $\beta$-sheet to $\alpha$-helix conversion observed for many proteins. The magnitude of ellipticity at 215 nm, used as a measure of $\beta$-content, was found to be dependent on the concentration of the alcohol. Under similar conditions of pH, fluorinated alcohol enhanced the intrinsic a-helicity of the protein molecule, whereas the addition of acetonitrile reduced the helical content. Ervatamin C exhibited high stability towards GuHCl induced unfolding in different O-states. Whereas the thermal unfolding of O-states was non-cooperative, contrary to the cooperativity seen in the absence of the organic solvents under similar conditions. Moreover, the differential scanning calorimetry endotherms of the protein acquired at pH 2.0 were deconvoluted into two distinct peaks, suggesting two cooperative transitions. With increase in pH, the shape of the thermogram changed markedly to exhibit a major and a minor transition. The appearance of two distinct peaks in the DSC together with the non-cooperative thermal transition of the protein in O-states indicates that the molecular structure of ervatamin C consists of two domains with different stabilities.

Three Binding Sets Analysis of $\alpha$-Lactalbumin by Interaction of Tetradecy Trimethyl Ammonium Bromude

  • M.R.Housainfokht
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.145-148
    • /
    • 2001
  • The interaction between tetradecyl trimethyl ammonium bromide (TTAB) with bovine ${\alpha}-lactalbumin$ has been investigated at pH = 9 and at $37^{\circ}C$ by isothermal titration calorimetry, equilibrium dialysis and UV-Vis spectrophotometry methods. The binding data from unusual Scatchard plot have been analyzed in terms of the Hill equation for three sets of binding sites. The calorimetric data show that TTAB interacts endothermically with ${\alpha}-lactalbumin$ and causes protein unfolding below 2 mM concentration of TTAB, which is confirmed by spectrophotometric data. The unfolding of the protein would be mainly due to occupation of the second set of binding sites.

Acid and Chemical Induced Conformational Changes of Ervatamin B. Presence of Partially Structured Multiple Intermediates

  • Sundd, Monica;Kundu, Suman;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.143-154
    • /
    • 2002
  • The structural and functional aspects of ervatamin B were studied in solution. Ervatamin B belongs to the $\alpha+\beta$ class of proteins. The intrinsic fluorescence emission maximum of the enzyme was at 350 nm under neutral conditions, and at 355 nm under denaturing conditions. Between pH 1.0-2.5 the enzyme exists in a partially unfolded state with minimum or no tertiary structure, and no proteolytic activity. At still lower pH, the enzyme regains substantial secondary structure, which is predominantly $\beta$-sheet conformation and shows a strong binding to 8-anilino-1-napthalene-sulfonic acid (ANS). In the presence of salt, the enzyme attains a similar state directly from the native state. Under neutral conditions, the enzyme was stable in urea, while the guanidine hydrochloride (GuHCl) induced equilibrium unfolding was cooperative. The GuHCl induced unfolding transition curves at pH 3.0 and 4.0 were non-coincidental, indicating the presence of intermediates in the unfolding pathway. This was substantiated by strong ANS binding that was observed at low concentrations of GuHCl at both pH 3.0 and 4.0. The urea induced transition curves at pH 3.0 were, however, coincidental, but non-cooperative. This indicates that the different structural units of the enzyme unfold in steps through intermediates. This observation is further supported by two emission maxima in ANS binding assay during urea denaturation. Hence, denaturant induced equilibrium unfolding pathway of ervatamin B, which differs from the acid induced unfolding pathway, is not a simple two-state transition but involves intermediates which probably accumulate at different stages of protein folding and hence adds a new dimension to the unfolding pathway of plant proteases of the papain superfamily.

A Fusion Tag to Fold on: The S-Layer Protein SgsE Confers Improved Folding Kinetics to Translationally Fused Enhanced Green Fluorescent Protein

  • Ristl, Robin;Kainz, Birgit;Stadlmayr, Gerhard;Schuster, Heinrich;Pum, Dietmar;Messner, Paul;Obinger, Christian;Schaffer, Christina
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1271-1278
    • /
    • 2012
  • Genetic fusion of two proteins frequently induces beneficial effects to the proteins, such as increased solubility, besides the combination of two protein functions. Here, we study the effects of the bacterial surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a on the folding of a C-terminally fused enhanced green fluorescent protein (EGFP) moiety. Although GFPs are generally unable to adopt a functional confirmation in the bacterial periplasm of Escherichia coli cells, we observed periplasmic fluorescence from a chimera of a 150-amino-acid N-terminal truncation of SgsE and EGFP. Based on this finding, unfolding and refolding kinetics of different S-layer-EGFP chimeras, a maltose binding protein-EGFP chimera, and sole EGFP were monitored using green fluorescence as indicator for the folded protein state. Calculated apparent rate constants for unfolding and refolding indicated different folding pathways for EGFP depending on the fusion partner used, and a clearly stabilizing effect was observed for the SgsE_C fusion moiety. Thermal stability, as determined by differential scanning calorimetry, and unfolding equilibria were found to be independent of the fused partner. We conclude that the stabilizing effect SgsE_C exerts on EGFP is due to a reduction of degrees of freedom for folding of EGFP in the fused state.

Protein unfolding by ATP-dependent proteases

  • Lee, Cheolju;Michael Schwartz;Sumit Prakash;Masahiro Iwakura;Andreas Matouschek
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.34-34
    • /
    • 2003
  • Protein unfolding is a key step in several cellular processes, including protein translocation across some membranes and protein degradation by ATP-dependent proteases. C1pAP protease and the proteasome can actively unfold proteins in a process that hydrolyzes ATP, These proteases catalyze unfolding by processively unraveling their substrates from the attachment point of the degradation signal. As a consequence, the ability of a protein to be degraded depends on its structure as well as its stability. An ${\alpha}$-helix is easier to unravel than a ${\beta}$-strand. In multidomain proteins, independently stable domains are unfolded sequentially. The steric constraints imposed on substrate proteins during their degradation by the proteasome were investigated by constructing a model protein in which specific parts of the polypeptide chain were covalently connected through disulfide bridges. The cross-linked model proteins were fully degraded by the proteasome, but two or more cross-links retarded the degradation slightly. Our results suggest that the pore of the proteasome allows the concurrent passage of at least three stretches of a polypeptide chain, and also explain the limited degradation by the proteasome that occurs in the processing of the transcription factor NF-KB, and also implicate difficulty in degradation of amyloidal aggregates by the proteasome

  • PDF

Characterization of the Unfolding Intermediate State and Equilibrium Unfolding Pathway of Single Chain Monellin

  • Heedouk Hong;Sung, Yoon-hui;Kim, Yong-Rok;Lee, Weontae
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.39-39
    • /
    • 1999
  • Single chain-monellin (SCM) was recently constructed by fusing the two chains of monellin. From the view of protein folding, SCM serves as an ideal model system especially in tackling ${\alpha}$-helix-${\beta}$-sheet interactions due to the following reasons: First, it consists of simple distinct structural elements (${\alpha}$-helix and ${\beta}$-sheet) which are assembled in a perpendicular manner.(omitted)

  • PDF