References
- Arai, M. and Kuwajima, K. (1996) Rapid fonnation of a molten globule intennediate in refolding of alpha-lactalbumin. Folding and Design 1, 275-287. https://doi.org/10.1016/S1359-0278(96)00041-7
- Balasubrarnanian, D. and Kumar, C. (1976) Recent studies of the circular dichroism and optical rotatory dispersion of biopolymers. Applied Spectroscopy Reviews 11, 223-286. https://doi.org/10.1080/05704927608060379
- Bychkova, V. E., Dujsekina, A. E., Kienin, S. I., Tiktopulo, E. I., Uversky, V. N. and Ptitsyn, O. B. (1996) Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry 35, 6058-6063. https://doi.org/10.1021/bi9522460
- Chakrabarti, C., Biswas, S., Kundu, S., Sundd, M., Jagannadham, M. V. and Dattagupta, J. K. (1999) Crystallization and preliminary X-ray analysis of ervatamin B and C, two thiol proteases from Ervatamia coronaria. Acta Crystallogr. D55, 1074-1075.
- Chen, Y. H., Yang, J. T. and Martinez, H. M. (1972) Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11, 4120-4131. https://doi.org/10.1021/bi00772a015
- Dobson, C. M. (1992) Unfolded proteins, compact states and molten globules. Curr. Opin. Struct. Biol. 2, 6-12. https://doi.org/10.1016/0959-440X(92)90169-8
- Edwin, F. and Jagannadham, M. V. (1998) Sequential unfolding of papain in molten globule state. Biochem. Biophys. Res. Comm. 252, 654-660. https://doi.org/10.1006/bbrc.1998.9720
- Fink, A. L., Calciano, L. J., Goto, Y., Kurotsu, T. and Palleros, D. R. (1994) Classification of acid denaturation of proteins: intennediates and unfolded states. Biochemistry 33, 12504- 12511. https://doi.org/10.1021/bi00207a018
- Garel, J. R. (1992) Folding of large proteins: Multidomain and multisubunit proteins; in Protein Folding, Creighton, T. E. (ed.), pp. 405-454. Freeman, New York, New York.
- Gast, K., Zirwer, D., Muller-Frohne, M. and Damaschun, G. (1998) Compactness of the kinetic molten globule of bovine alpha-lactalbumin: a dynamic light scattering study. Protein Sci. 7, 2004-2011. https://doi.org/10.1002/pro.5560070917
-
Goto, Y. and Fink, A. L. (1989) Confonnational states of
${\beta}$ -lactamase: molten-globule states at acidic and alkaline pH with high salt. Biochemistry 28, 945-952. https://doi.org/10.1021/bi00429a004 - Goto, Y., Calciano, L. J. and Fink, A. L. (1990a) Acid-induced folding of proteins. Proc. Natl. Acad. Sci. USA 87, 573-577. https://doi.org/10.1073/pnas.87.2.573
- Goto, Y., Takahashi, N. and Fink, A. L. (1990b) Mechanism of acid-induced folding of proteins. Biochemistry 29, 3480-3488. https://doi.org/10.1021/bi00466a009
- Harding, M. M., Williams, D. H. and Woolfson, D. N. (1991) Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin. Biochemistry 30, 3120-3128. https://doi.org/10.1021/bi00226a020
- Hernandez-Arana, A. and Soriano-Garcia, M. (1988) Detection and characterization by circular dichroism of a stable intennediate state fonned in the thermal unfolding of papain. Biochim. Biophys. Acta 954, 170-175. https://doi.org/10.1016/0167-4838(88)90068-4
-
Kamphuis, I. G., Kalk, K. H., Swarte, M. B. and Drenth, J. (1984) Structure of papain refined at 1.65
${\AA}$ resolution. J. Mol. BioI. 179, 233-256. https://doi.org/10.1016/0022-2836(84)90467-4 - Khorasanizadeh, S., Peters, I. D., Butt, T. R. and Roder. H. (1993) Folding and stability of a tryptophan containing mutant of ubiquitin. Biochemistry 32, 7054-7063. https://doi.org/10.1021/bi00078a034
- Khurana, R., and Udgaonkar, J. B. (1994) Equilibrium unfolding studies of barstar: evidence for an alternative confonnation which resembles a molten globule. Biochemistry 33, 106-115. https://doi.org/10.1021/bi00167a014
- Kim, P. S. and Baldwin R. L. (1982) Specific intennediates in the folding reactions of small proteins and the mechanism of protein folding. Annu. Rev. Biochem. 51, 459-489. https://doi.org/10.1146/annurev.bi.51.070182.002331
- Kim, P. S. and Baldwin, R. L. (1990) Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631-660. https://doi.org/10.1146/annurev.bi.59.070190.003215
- Kimmel, J. R. and Smith, E. L. (1957) The properties of papain. Adv. Enzymol. 19, 267-334.
- Kundu, S., Sundd, M. and Jagannadham, M. V. (1999) Structural characterization of a highly stable cysteine protease ervatamin C. Biochem. Biophys. Res. Commun. 264, 635-642. https://doi.org/10.1006/bbrc.1999.1550
- Kundu, S., Sundd, M. and Jagannadham, M. V. (2000) Purification and characterization of a stable cysteine protease ervatamin B, with two disulfide bridges, from the latex of Ervatamia coronaria. J. Agric. Food Chem. 48, 171-179. https://doi.org/10.1021/jf990661j
-
Kuwajima, K., Nitta, K., Yoneyama, M. and Sugai, S. (1976) Three state denaturation of
${\alpha}$ -lactalbumin by guanidine hydrochloride. J. Mol. BioI. 106, 359-373. https://doi.org/10.1016/0022-2836(76)90091-7 - Kuwajima, K., Semisotnov, G. V., Finkelstein, A. V., Sugai, S. and Ptitsyn, O. B. (1993) Secondary structure of globular proteins at the early and the final stages in protein folding. FEBS Lett. 334, 265-268. https://doi.org/10.1016/0014-5793(93)80691-M
- Levitt, M., and Chothia, C. (1976) Structural patterns in globular proteins. Nature 261, 552-558. https://doi.org/10.1038/261552a0
- Manavalan, P. and Johnson, W. C. (1983) Sensitivity of circular dichroism to protein tertiary structure class. Nature 305, 831-832. https://doi.org/10.1038/305831a0
- Marmorino, J. L., Lehti, M. and Pielak, G. J. (1998) Native tertiary structure in an A-state. J. Mol. Biol 275, 379-388. https://doi.org/10.1006/jmbi.1997.1450
- Morjana, N. and Tal, R. (1998) Expression and equilibrium denaturation of cardiac troponin I: stabilization of a folding intermediate during denaturation by urea. Biotechnol. Appl. Biochem. 28, 7-17.
-
Nozaka, M., Kuwajima, K., Nitta, K. and Sugai, S. (1978) Detection and characterization of the intermediate on the folding pathway of human
$\alpha$ -lactalbumin. Biochemistry 17, 3753-3758. https://doi.org/10.1021/bi00611a013 - Ohgushi, M. and Wada, A. (1983) Molten-globule state: a compact form of globular proteins with mobile side chains. FEBS Lett. 164, 21-24. https://doi.org/10.1016/0014-5793(83)80010-6
- Osterlund, T., Beussman, D. J., Julenius, K., Poon, P. H., Linse, S., Shabanowitz, J., Hunt, D. F., Schotz, M. C., Derewenda, Z. S. and Holm, C. (1999) Domain identification of hormone-sensitive lipase by circular dichroism and fluorescence spectroscopy, limited proteolysis and mass spectrometry. J. BioI. Chem. 274, 15382-15388. https://doi.org/10.1074/jbc.274.22.15382
- Privalov, P. L. (1979) Stability of proteins: small globular proteins. Adv. Protein Chem. 33, 167- 241. https://doi.org/10.1016/S0065-3233(08)60460-X
- Ptitsyn, O. B. (1992) The molten globule state; in Protein Folding, Creighton, T. E. (ed.), pp. 243-300. Freeman, New York, New York.
- Ptitsyn, O. B. (1995) Molten globule and protein folding. Adv. Protein Chem. 47, 83-229. https://doi.org/10.1016/S0065-3233(08)60546-X
- Ptitsyn, O. B., Pain, R. H., Semisotnov, G. V., Zerovnik, E. and Razgulyaev, O. I. (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 262, 20-24. https://doi.org/10.1016/0014-5793(90)80143-7
- Schmid, F. X. (1989) Spectral methods of characterizing protein conformation and conformational changes. In Protein Structure: A Practical Approach, (Creighton, T.E., ed.), pp. 251-285. IRL Press, Oxford, U.K.
- Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. I., Uversky, V. N., Gripas, A. F. and Gilmanshin, R. I. (1991) Study of the molten globule intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31, 119-128. https://doi.org/10.1002/bip.360310111
- Shirley, B. A. (1995) Urea and guanidine hydrochloride denaturation curves. In Protein Folding and Stability, Shirley, B. A. (Eds) pp. 177-190, Humana Press, Totowa, New Jersey.
- Solis-Mendiola, S., Arroyo-Reyna, A. and Hernandez-Arana, A. (1992) Circular dichroism of cysteine proteinases from papaya latex. Evidence of differences in the folding of their polypeptide chains. Biochim. Biophys. Acta 1118, 288-292. https://doi.org/10.1016/0167-4838(92)90286-M
- Strickland, E. H. (1974) Aromatic contributions to circular dichroism spectra of proteins. CRC Crit. Rev. Biochem. 2, 113-175. https://doi.org/10.3109/10409237409105445
-
Strickland, E. H., Hortwiz, J. and Billups, C. (1969) Fine structure in the near-ultraviolet circular dichroism and absorption spectra of tryptophan derivatives and chymotrypsinogen A at
$77^ {\circ}K$ . Biochemistry 8, 3205-3213. https://doi.org/10.1021/bi00836a012 - Sundd, M., Kundu, S., Pal, G. P. and Medicherla, J. V. (1998) Purification and characterization of a highly stable cysteine protease from the latex of Ervatamia coronaria. Biosci. Biotech. Biochem. 62, 1947-1955. https://doi.org/10.1271/bbb.62.1947
- Tcherkasskaya, O. and Ptitsyn, O. B. (1999) Molten globule versus variety of intermediates: influence of anions on pH-denatured apomyoglobin. FEBS Lett. 455, 325-331. https://doi.org/10.1016/S0014-5793(99)00792-9
- Uversky, V. N., Kamoup, A. S., Khurana, R., Segel, D. J., Doniach, S. and Fink, A. L. (1999) Association of partially folded intermediates of Staphylococcal nuclease induces structure and stability. Protein Sci. 8, 161-173. https://doi.org/10.1110/ps.8.1.161
- Uversky, V. N., Karnoup, A. S., Segel, D. J., Seshadri, S., Doniach, S. and Fink, A. L. (1998) Anion-induced folding of Staphylococcal nuclease: characterization of multiple equilibrium partially folded intermediates. J. Mol. BioI. 278, 879-894. https://doi.org/10.1006/jmbi.1998.1741
- Xiao, J., Liang, S. -J. and Tsou, C. -L. (1993) Inactivation before significant conformational change during denaturation of papain by guanidine hydrochloride. Biochim. Biophys. Acta1164, 54- 60. https://doi.org/10.1016/0167-4838(93)90111-4
- Zerovnik, E., Janjic, V., Francky, A. and Mozetic-Francky, B. (1999) Equilibrium and transient intermediates in folding of human macrophage migration inhibitory factor. Eur. J. Biochem. 260, 609-618. https://doi.org/10.1046/j.1432-1327.1999.00170.x
Cited by
- SDS-induced conformational transitions of ervatamin B: evidence of greater stability of α-rich domain compared to β-rich domain of the SDS derived state vol.32, pp.3, 2003, https://doi.org/10.1016/S0927-7765(03)00160-7
- Effects of Zinc on the Activity and Conformational Changes of Arginine Kinase and Its Intermediate vol.36, pp.4, 2003, https://doi.org/10.5483/BMBRep.2003.36.4.359
- Structural characterization of the papaya cysteine proteinases at low pH vol.341, pp.2, 2006, https://doi.org/10.1016/j.bbrc.2005.12.210
- Equilibrium unfolding of kinetically stable serine protease milin: the presence of various active and inactive dimeric intermediates vol.39, pp.10, 2010, https://doi.org/10.1007/s00249-010-0593-z
- Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex vol.72, pp.14-15, 2011, https://doi.org/10.1016/j.phytochem.2011.05.009
- Structural functional and folding scenario of an anti platelet and thrombolytic enzyme crinumin vol.68, 2014, https://doi.org/10.1016/j.ijbiomac.2014.04.002
- SDS Induced Refolding of Pre-molten Globule State of Cryptolepain: Differences in Chemical and Temperature-Induced Equilibrium Unfolding of the Protein in SDS-Induced State vol.83, pp.1, 2013, https://doi.org/10.1007/s40011-012-0071-8
- Multiple Intermediate Conformations of Jack Bean Urease at Low pH: Anion-induced Refolding vol.25, pp.6, 2006, https://doi.org/10.1007/s10930-006-9026-3
- Accumulation of partly folded states in the equilibrium unfolding of ervatamin A: Spectroscopic description of the native, intermediate, and unfolded states vol.89, pp.11, 2007, https://doi.org/10.1016/j.biochi.2007.06.004