DOI QR코드

DOI QR Code

Acid and Chemical Induced Conformational Changes of Ervatamin B. Presence of Partially Structured Multiple Intermediates

  • Sundd, Monica (Department of Biochemistry, University of Iowa) ;
  • Kundu, Suman (Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University) ;
  • Jagannadham, Medicherla V. (Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University)
  • Published : 2002.03.31

Abstract

The structural and functional aspects of ervatamin B were studied in solution. Ervatamin B belongs to the $\alpha+\beta$ class of proteins. The intrinsic fluorescence emission maximum of the enzyme was at 350 nm under neutral conditions, and at 355 nm under denaturing conditions. Between pH 1.0-2.5 the enzyme exists in a partially unfolded state with minimum or no tertiary structure, and no proteolytic activity. At still lower pH, the enzyme regains substantial secondary structure, which is predominantly $\beta$-sheet conformation and shows a strong binding to 8-anilino-1-napthalene-sulfonic acid (ANS). In the presence of salt, the enzyme attains a similar state directly from the native state. Under neutral conditions, the enzyme was stable in urea, while the guanidine hydrochloride (GuHCl) induced equilibrium unfolding was cooperative. The GuHCl induced unfolding transition curves at pH 3.0 and 4.0 were non-coincidental, indicating the presence of intermediates in the unfolding pathway. This was substantiated by strong ANS binding that was observed at low concentrations of GuHCl at both pH 3.0 and 4.0. The urea induced transition curves at pH 3.0 were, however, coincidental, but non-cooperative. This indicates that the different structural units of the enzyme unfold in steps through intermediates. This observation is further supported by two emission maxima in ANS binding assay during urea denaturation. Hence, denaturant induced equilibrium unfolding pathway of ervatamin B, which differs from the acid induced unfolding pathway, is not a simple two-state transition but involves intermediates which probably accumulate at different stages of protein folding and hence adds a new dimension to the unfolding pathway of plant proteases of the papain superfamily.

Keywords

References

  1. Arai, M. and Kuwajima, K. (1996) Rapid fonnation of a molten globule intennediate in refolding of alpha-lactalbumin. Folding and Design 1, 275-287. https://doi.org/10.1016/S1359-0278(96)00041-7
  2. Balasubrarnanian, D. and Kumar, C. (1976) Recent studies of the circular dichroism and optical rotatory dispersion of biopolymers. Applied Spectroscopy Reviews 11, 223-286. https://doi.org/10.1080/05704927608060379
  3. Bychkova, V. E., Dujsekina, A. E., Kienin, S. I., Tiktopulo, E. I., Uversky, V. N. and Ptitsyn, O. B. (1996) Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry 35, 6058-6063. https://doi.org/10.1021/bi9522460
  4. Chakrabarti, C., Biswas, S., Kundu, S., Sundd, M., Jagannadham, M. V. and Dattagupta, J. K. (1999) Crystallization and preliminary X-ray analysis of ervatamin B and C, two thiol proteases from Ervatamia coronaria. Acta Crystallogr. D55, 1074-1075.
  5. Chen, Y. H., Yang, J. T. and Martinez, H. M. (1972) Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11, 4120-4131. https://doi.org/10.1021/bi00772a015
  6. Dobson, C. M. (1992) Unfolded proteins, compact states and molten globules. Curr. Opin. Struct. Biol. 2, 6-12. https://doi.org/10.1016/0959-440X(92)90169-8
  7. Edwin, F. and Jagannadham, M. V. (1998) Sequential unfolding of papain in molten globule state. Biochem. Biophys. Res. Comm. 252, 654-660. https://doi.org/10.1006/bbrc.1998.9720
  8. Fink, A. L., Calciano, L. J., Goto, Y., Kurotsu, T. and Palleros, D. R. (1994) Classification of acid denaturation of proteins: intennediates and unfolded states. Biochemistry 33, 12504- 12511. https://doi.org/10.1021/bi00207a018
  9. Garel, J. R. (1992) Folding of large proteins: Multidomain and multisubunit proteins; in Protein Folding, Creighton, T. E. (ed.), pp. 405-454. Freeman, New York, New York.
  10. Gast, K., Zirwer, D., Muller-Frohne, M. and Damaschun, G. (1998) Compactness of the kinetic molten globule of bovine alpha-lactalbumin: a dynamic light scattering study. Protein Sci. 7, 2004-2011. https://doi.org/10.1002/pro.5560070917
  11. Goto, Y. and Fink, A. L. (1989) Confonnational states of ${\beta}$-lactamase: molten-globule states at acidic and alkaline pH with high salt. Biochemistry 28, 945-952. https://doi.org/10.1021/bi00429a004
  12. Goto, Y., Calciano, L. J. and Fink, A. L. (1990a) Acid-induced folding of proteins. Proc. Natl. Acad. Sci. USA 87, 573-577. https://doi.org/10.1073/pnas.87.2.573
  13. Goto, Y., Takahashi, N. and Fink, A. L. (1990b) Mechanism of acid-induced folding of proteins. Biochemistry 29, 3480-3488. https://doi.org/10.1021/bi00466a009
  14. Harding, M. M., Williams, D. H. and Woolfson, D. N. (1991) Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin. Biochemistry 30, 3120-3128. https://doi.org/10.1021/bi00226a020
  15. Hernandez-Arana, A. and Soriano-Garcia, M. (1988) Detection and characterization by circular dichroism of a stable intennediate state fonned in the thermal unfolding of papain. Biochim. Biophys. Acta 954, 170-175. https://doi.org/10.1016/0167-4838(88)90068-4
  16. Kamphuis, I. G., Kalk, K. H., Swarte, M. B. and Drenth, J. (1984) Structure of papain refined at 1.65${\AA}$resolution. J. Mol. BioI. 179, 233-256. https://doi.org/10.1016/0022-2836(84)90467-4
  17. Khorasanizadeh, S., Peters, I. D., Butt, T. R. and Roder. H. (1993) Folding and stability of a tryptophan containing mutant of ubiquitin. Biochemistry 32, 7054-7063. https://doi.org/10.1021/bi00078a034
  18. Khurana, R., and Udgaonkar, J. B. (1994) Equilibrium unfolding studies of barstar: evidence for an alternative confonnation which resembles a molten globule. Biochemistry 33, 106-115. https://doi.org/10.1021/bi00167a014
  19. Kim, P. S. and Baldwin R. L. (1982) Specific intennediates in the folding reactions of small proteins and the mechanism of protein folding. Annu. Rev. Biochem. 51, 459-489. https://doi.org/10.1146/annurev.bi.51.070182.002331
  20. Kim, P. S. and Baldwin, R. L. (1990) Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631-660. https://doi.org/10.1146/annurev.bi.59.070190.003215
  21. Kimmel, J. R. and Smith, E. L. (1957) The properties of papain. Adv. Enzymol. 19, 267-334.
  22. Kundu, S., Sundd, M. and Jagannadham, M. V. (1999) Structural characterization of a highly stable cysteine protease ervatamin C. Biochem. Biophys. Res. Commun. 264, 635-642. https://doi.org/10.1006/bbrc.1999.1550
  23. Kundu, S., Sundd, M. and Jagannadham, M. V. (2000) Purification and characterization of a stable cysteine protease ervatamin B, with two disulfide bridges, from the latex of Ervatamia coronaria. J. Agric. Food Chem. 48, 171-179. https://doi.org/10.1021/jf990661j
  24. Kuwajima, K., Nitta, K., Yoneyama, M. and Sugai, S. (1976) Three state denaturation of ${\alpha}$-lactalbumin by guanidine hydrochloride. J. Mol. BioI. 106, 359-373. https://doi.org/10.1016/0022-2836(76)90091-7
  25. Kuwajima, K., Semisotnov, G. V., Finkelstein, A. V., Sugai, S. and Ptitsyn, O. B. (1993) Secondary structure of globular proteins at the early and the final stages in protein folding. FEBS Lett. 334, 265-268. https://doi.org/10.1016/0014-5793(93)80691-M
  26. Levitt, M., and Chothia, C. (1976) Structural patterns in globular proteins. Nature 261, 552-558. https://doi.org/10.1038/261552a0
  27. Manavalan, P. and Johnson, W. C. (1983) Sensitivity of circular dichroism to protein tertiary structure class. Nature 305, 831-832. https://doi.org/10.1038/305831a0
  28. Marmorino, J. L., Lehti, M. and Pielak, G. J. (1998) Native tertiary structure in an A-state. J. Mol. Biol 275, 379-388. https://doi.org/10.1006/jmbi.1997.1450
  29. Morjana, N. and Tal, R. (1998) Expression and equilibrium denaturation of cardiac troponin I: stabilization of a folding intermediate during denaturation by urea. Biotechnol. Appl. Biochem. 28, 7-17.
  30. Nozaka, M., Kuwajima, K., Nitta, K. and Sugai, S. (1978) Detection and characterization of the intermediate on the folding pathway of human $\alpha$-lactalbumin. Biochemistry 17, 3753-3758. https://doi.org/10.1021/bi00611a013
  31. Ohgushi, M. and Wada, A. (1983) Molten-globule state: a compact form of globular proteins with mobile side chains. FEBS Lett. 164, 21-24. https://doi.org/10.1016/0014-5793(83)80010-6
  32. Osterlund, T., Beussman, D. J., Julenius, K., Poon, P. H., Linse, S., Shabanowitz, J., Hunt, D. F., Schotz, M. C., Derewenda, Z. S. and Holm, C. (1999) Domain identification of hormone-sensitive lipase by circular dichroism and fluorescence spectroscopy, limited proteolysis and mass spectrometry. J. BioI. Chem. 274, 15382-15388. https://doi.org/10.1074/jbc.274.22.15382
  33. Privalov, P. L. (1979) Stability of proteins: small globular proteins. Adv. Protein Chem. 33, 167- 241. https://doi.org/10.1016/S0065-3233(08)60460-X
  34. Ptitsyn, O. B. (1992) The molten globule state; in Protein Folding, Creighton, T. E. (ed.), pp. 243-300. Freeman, New York, New York.
  35. Ptitsyn, O. B. (1995) Molten globule and protein folding. Adv. Protein Chem. 47, 83-229. https://doi.org/10.1016/S0065-3233(08)60546-X
  36. Ptitsyn, O. B., Pain, R. H., Semisotnov, G. V., Zerovnik, E. and Razgulyaev, O. I. (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 262, 20-24. https://doi.org/10.1016/0014-5793(90)80143-7
  37. Schmid, F. X. (1989) Spectral methods of characterizing protein conformation and conformational changes. In Protein Structure: A Practical Approach, (Creighton, T.E., ed.), pp. 251-285. IRL Press, Oxford, U.K.
  38. Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. I., Uversky, V. N., Gripas, A. F. and Gilmanshin, R. I. (1991) Study of the molten globule intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31, 119-128. https://doi.org/10.1002/bip.360310111
  39. Shirley, B. A. (1995) Urea and guanidine hydrochloride denaturation curves. In Protein Folding and Stability, Shirley, B. A. (Eds) pp. 177-190, Humana Press, Totowa, New Jersey.
  40. Solis-Mendiola, S., Arroyo-Reyna, A. and Hernandez-Arana, A. (1992) Circular dichroism of cysteine proteinases from papaya latex. Evidence of differences in the folding of their polypeptide chains. Biochim. Biophys. Acta 1118, 288-292. https://doi.org/10.1016/0167-4838(92)90286-M
  41. Strickland, E. H. (1974) Aromatic contributions to circular dichroism spectra of proteins. CRC Crit. Rev. Biochem. 2, 113-175. https://doi.org/10.3109/10409237409105445
  42. Strickland, E. H., Hortwiz, J. and Billups, C. (1969) Fine structure in the near-ultraviolet circular dichroism and absorption spectra of tryptophan derivatives and chymotrypsinogen A at $77^ {\circ}K$. Biochemistry 8, 3205-3213. https://doi.org/10.1021/bi00836a012
  43. Sundd, M., Kundu, S., Pal, G. P. and Medicherla, J. V. (1998) Purification and characterization of a highly stable cysteine protease from the latex of Ervatamia coronaria. Biosci. Biotech. Biochem. 62, 1947-1955. https://doi.org/10.1271/bbb.62.1947
  44. Tcherkasskaya, O. and Ptitsyn, O. B. (1999) Molten globule versus variety of intermediates: influence of anions on pH-denatured apomyoglobin. FEBS Lett. 455, 325-331. https://doi.org/10.1016/S0014-5793(99)00792-9
  45. Uversky, V. N., Kamoup, A. S., Khurana, R., Segel, D. J., Doniach, S. and Fink, A. L. (1999) Association of partially folded intermediates of Staphylococcal nuclease induces structure and stability. Protein Sci. 8, 161-173. https://doi.org/10.1110/ps.8.1.161
  46. Uversky, V. N., Karnoup, A. S., Segel, D. J., Seshadri, S., Doniach, S. and Fink, A. L. (1998) Anion-induced folding of Staphylococcal nuclease: characterization of multiple equilibrium partially folded intermediates. J. Mol. BioI. 278, 879-894. https://doi.org/10.1006/jmbi.1998.1741
  47. Xiao, J., Liang, S. -J. and Tsou, C. -L. (1993) Inactivation before significant conformational change during denaturation of papain by guanidine hydrochloride. Biochim. Biophys. Acta1164, 54- 60. https://doi.org/10.1016/0167-4838(93)90111-4
  48. Zerovnik, E., Janjic, V., Francky, A. and Mozetic-Francky, B. (1999) Equilibrium and transient intermediates in folding of human macrophage migration inhibitory factor. Eur. J. Biochem. 260, 609-618. https://doi.org/10.1046/j.1432-1327.1999.00170.x

Cited by

  1. SDS-induced conformational transitions of ervatamin B: evidence of greater stability of α-rich domain compared to β-rich domain of the SDS derived state vol.32, pp.3, 2003, https://doi.org/10.1016/S0927-7765(03)00160-7
  2. Effects of Zinc on the Activity and Conformational Changes of Arginine Kinase and Its Intermediate vol.36, pp.4, 2003, https://doi.org/10.5483/BMBRep.2003.36.4.359
  3. Structural characterization of the papaya cysteine proteinases at low pH vol.341, pp.2, 2006, https://doi.org/10.1016/j.bbrc.2005.12.210
  4. Equilibrium unfolding of kinetically stable serine protease milin: the presence of various active and inactive dimeric intermediates vol.39, pp.10, 2010, https://doi.org/10.1007/s00249-010-0593-z
  5. Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex vol.72, pp.14-15, 2011, https://doi.org/10.1016/j.phytochem.2011.05.009
  6. Structural functional and folding scenario of an anti platelet and thrombolytic enzyme crinumin vol.68, 2014, https://doi.org/10.1016/j.ijbiomac.2014.04.002
  7. SDS Induced Refolding of Pre-molten Globule State of Cryptolepain: Differences in Chemical and Temperature-Induced Equilibrium Unfolding of the Protein in SDS-Induced State vol.83, pp.1, 2013, https://doi.org/10.1007/s40011-012-0071-8
  8. Multiple Intermediate Conformations of Jack Bean Urease at Low pH: Anion-induced Refolding vol.25, pp.6, 2006, https://doi.org/10.1007/s10930-006-9026-3
  9. Accumulation of partly folded states in the equilibrium unfolding of ervatamin A: Spectroscopic description of the native, intermediate, and unfolded states vol.89, pp.11, 2007, https://doi.org/10.1016/j.biochi.2007.06.004