• Title/Summary/Keyword: undrained triaxial compression tests

Search Result 65, Processing Time 0.039 seconds

Behavior of geotextile reinforced flyash + clay-mix by laboratory evaluation

  • Vashi, Jigisha M.;Desai, Atul K.;Solanki, Chandresh H.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.331-342
    • /
    • 2013
  • The major factors that control the performance of reinforced soil structures is the interaction between the soil and the reinforcement. Thus it is necessary to obtain the accurate bond parameters to be used in the design of these structures. To evaluate the behavior of flyash + clay soil reinforced with a woven geotextile, 36 Unconsolidated-Undrained (UU) and 12 reinforced Consolidated-Undrainrained (CU) triaxial compression tests were conducted. The moisture content of soil during remolding, confining pressures and arrangement of geotextile layers were all varied so that the behavior of the sample could be examined. The stress strain patterns, drainage, modulus of deformation, effect of confinement pressures, effects of moisture content have been evaluated. The impact of moisture content in flyash + clay backfills on critical shear parameters was also studied to recommend placement moisture for compaction to MDD. The results indicate that geotextile reinforced flyash + clay backfill might be a viable alternative in reinforced soil structures if good-quality granular backfill material is not readily available.

Study on Anisotropy of Normally Consolidated Clay Soils (정규압밀점성토의 이방성에 관한 연구)

  • 권오순;정충기
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 1995
  • In situ clay soils with Ko condition have anisotropic characteristics, varying the response according to the principal stress direction upon loading. But because of their practicality and simplicity, consolidated isotropic undrained compression tests are commonly used in practice to determine the behavior of cohesive soils. In this study to investigate the anisotropic characteristics and the effects of consolidation stress states on the response of normally consolidated clay soils during shearing, triaxial compression and extension tests after consolidating the undisturbed clay soil samples, which are obtained as a block sample to normalized consolidation states under isotropic or Ko state, were carried out. As a result of tests, the anisotropy of the undrained strength was confirmed. Comparing the soil responses between isotropic and Ko consolidation, the undrained strength by isotropic consolidation is overestimated because of its higher mean consolidation pressure. And isotropic consolidation reduces the anisotropy of soil response and influences on the stress-strain behavior and pore pressure response because the animotropic soil structure is partially collapsed during isotropic consolidation process. Also, OCR in overconsolidated soils is decreased by isotropic consolidatiorL Friction angle in eztension is higher than that in compression, but regression analysis shows that friction angle with cohesion in extension is almost the same as that without cohesion in compresslon.

  • PDF

Interpretation of Empirical Cone Factors for Determining Undrained Strength (비배수강도 결정을 위한 콘 지수 연구)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3296-3301
    • /
    • 2009
  • The results of PCPT(Pezocone Penetration Test) are widely used for the estimation of the undrained shear strength, for which the empirical cone factors($N_{kt}$, $N_{ke}$, $N_{{\Delta}u}$) need to be obtained at each site. In this study, the cone factors were estimated, for the soils at Bookmyun area in Changwon city, using the undrained shear strengths from the unconfined and UU triaxial compression tests. The parametric studies with plastic index and pore water pressure ratio were performed as well. $N_{kt}$, $N_{ke}$ and $N_{{\Delta}u}$ were estimated in the ranges of 8~40, 7~37, and 1~26 respectively. It was observed that there is a relationship between the cone factors, specially $N_{{\Delta}u}$, and the pore pressure ratio.

Study on the Undrained Strength Characteristics of Fiber Mixed Clay (섬유혼합 점토의 비배수 강도 특성에 대한 연구)

  • 박영곤;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.382-387
    • /
    • 1998
  • Triaxial compression tests were run to study on the undrained strength characteristics of fiber mixed kaolin clay(Hadong). The influence of various test parameters such as amount and aspect ratio(ratio of length to diameter) of fiber, confining stress was also investigated. Test results showed that the increase in aspect ratio was increased in deviator stress at failure, but no effect on pore water pressure at failure. Deviator stress at failure was also increased at 0.5% mixing ratio(weight fraction of fiber to that of soil solid) of fiber but it was, thereafter, decreased and wits reached to constant after 2% mixing ratio. On the contrary, Pore water pressure at failure was increased as mixing ratio of fiber was greater than 1%. Deviator stress and pore water pressure of both clay and fiber mixed clay(FMC) at failure were increased as confining stress was increased. Deviator stress of FMC at failure was about 10% larger than that of clay, but pore water pressure of FMC at failure was almost similar to that of clay.

  • PDF

Effects of Consolidation Mode on Engineering Properties of Geomaterials (압밀조건이 지반재료의 공학적 성질에 미치는 영향)

  • Kim Dae-Kyu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.39-41
    • /
    • 2004
  • The engineering properties of the geomaterial, an essential material in construction engineering, are significantly influenced by consolidation mode, which is called inherent anisotropy. Speically cohesive soils feature the anisotropy mainly due to their flate-like minerals and chemical interactions. In this research, an experimental study was conducted for the investigation of the anisoropy. Three isotropic and four anisotropic consolidated-undrained triaxial compression tests were performed for the cohesive specimens with various stress ratios of consolidation. The effects of the consolidation mode for cohesive soils were presented and investigated in stress-strain behavior, pore water pressure, and undrained shear strength of the test results.

  • PDF

Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils

  • Karabash, Zuheir;Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • This paper presents a series of conventional undrained triaxial compression tests conducted to determine the effect of both tire crumbs and cement addition on Narli sand specimens. The tire crumb contents and cement contents were 3%, 7%, 15%; and 1%, 3%, 5% by dry weight of the sand specimens respectively. Specimens were prepared at about 35% relative density, cured during overnight (about 17 hours) for artificially bonding under a 100 kPa effective stress (confining pressure of 500 kPa with a back pressure of 400 kPa), and then sheared. Deviatoric stress-axial strain, pore water pressure-axial strain behavior, and Young's modulus of the specimens at various mixture ratios of tire crumb/cement/sand were measured. Test results indicated that the addition of tire crumb to sand decreases Young's modulus, deviatoric stress and brittleness, and increase pore water pressure generation. The addition of cement to sand with tire crumbs increases deviatoric stress, Young's modulus, and changes its ductile behavior to a more brittle one. The results suggest that specimen formation in the way used here could reduce the tire disposal problem in not only economically, and environmentally, but also more effectively beneficial way for some geotechnical applications.

Application of a modified structural clay model considering anisotropy to embankment behavior

  • Zhang, Hao;Chen, Qiushi;Chen, Jinjian;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.79-97
    • /
    • 2017
  • Natural clays exhibit features such as structural and anisotropy. In this work, a constitutive model that is able to replicate these two salient features of natural clays is presented. The proposed model is based on the classical S-CLAY1 model, where the anisotropy of the soil is captured through the initial inclination and rotation of the yield surface. To account for the structural of the soil, the compression curve of the reconstituted soil is taken as the reference. All parameters of the proposed constitutive model have clear physical meanings and can be conveniently determined from conventional triaxial tests. This proposed model has been used to simulate the behavior of soft soil in the undrained triaxial tests and the performance of Murro embankment in terms of settlement and horizontal displacements during embankment construction and consolidation stage. Results of numerical simulations using proposed model have been compared with the field measurement data. The comparisons show that the two features significantly influence the prediction results.

An elastoplastic model for structured clays

  • Chen, Bo;Xu, Qiang;Sun, De'an
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.213-231
    • /
    • 2014
  • An elastoplastic model for structured clays, which is formulated based on the fact that the difference in mechanical behavior of structured and reconstituted clays is caused by the change of fabric in the post-yield deformation range, is present in this paper. This model is developed from an elastoplastic model for overconsolidated reconstituted clays, by considering that the variation in the yield surface of structured clays is similar to that of overconsolidated reconstituted clays. However, in order to describe the mechanical behavior of structured clays with precision, the model takes the bonding and parabolic strength envelope into consideration. Compared with the Cam-clay model, only two new parameters are required in the model for structured clays, which can be determined from isotropic compression and triaxial shear tests at different confining pressures. The comparison of model predictions and results of drained and undrained triaxial shear tests on four different marine clays shows that the model can capture reasonable well the strength and deformation characteristics of structured clays, including negative and positive dilatancy, strain-hardening and softening during shearing.

Distorted Bounding Surface of Clay with Consideration of the Effect of Temperature on Shearing Response (전단시 온도 영향을 고려한 점성토의 왜곡 경계면 모델 개발)

  • Woo, Sang Inn;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.117-124
    • /
    • 2020
  • The present research focuses on a methodology to describe shearing response of clay with respect to temperature. An increase of temperature shifts the normal consolidation line to move down in the plane of void ratio and mean effective stress. The critical state line, however, does not move as much as the normal consolidation line in accordance with temperature increase. As temperature increase, therefore, the difference between the critical state mean effective stress and the pre-consolidation pressure reduces. To reflect this easily, the present study applies a bounding surface consisting of two parts divided by the critical state mean effective stress. This study calibrated a bounding surface for the soft Bangkok clay and performed elemental simulation for undrained triaxial compression tests. The elemental simulation showed that the model can describe the mechanical response upon temperature of clay without complex hardening and evolution rules compared to the experimental data.

A Study on Cone Factors for Northeastern Part of Shiwha Area I : Evaluation and Pore Pressure Parameter (시화지구 북동지역에서의 콘 계수 연구 I: 값 결정 및 간극수압비)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.406-411
    • /
    • 2012
  • The undrained strength of soils is open determined from the results of the piezocone penetration. The reliability of the value of the undrained strength lies on the cone factor value, whose evaluation needs a lot of experimental data and investigation for each site. In this study, the cone factors were evaluated for the northeastern part of Shiwha area in Gyunggi province using the experimental data of the field vane, unconfined compression, and UU triaxial compression tests. The values of the conventional cone factors $N_{kt}$, $N_{ke}$, $N_{{\Delta}u}$, and the new factor $N_e$ were determined to be 12, 11, 3, and 13, respectively. It was observed that there is a remarkable relationship between $N_{{\Delta}u}$ and the pore pressure ratio Bq.