• Title/Summary/Keyword: underwater noise

Search Result 464, Processing Time 0.031 seconds

Measurement of Acoustic Radiation Efficiency of the Submerged Circular Cylindrical Structure in Water Tank (수조에서의 원통형 구조물 음향방사효율 측정에 관한 연구)

  • Han, Seungjin;Kang, Myunghwan;Lee, Jongju
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.747-752
    • /
    • 2015
  • Underwater radiated noise is an important characteristic in the naval weapon systems. It is difficult to measure the radiation efficiency of underwater vehicle, such as UUV(unmanned underwater vehicle) and underwater weapons in real operation environment. In this study, acoustic radiation efficiency of a circular cylindrical structure is measured in the laboratory-water tank. The radiation efficiency is compared with the numerical results and it is found that they are in a good agreement. Therefore, the measurement method can be applied effectively for predicting the underwater radiation noise and effectiveness of radiation reduction means.

Underwater Radiated Noise Analysis for Commercial Ship Using Power Flow Analysis (파워흐름해석법을 이용한 상선의 수중방사소음해석)

  • Kwon, Hyun-Wung;Hong, Suk-Youn;Song, Jee-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.30-36
    • /
    • 2012
  • Recently, the underwater radiated noises generated from large commercial ships have become a globally important issue. Countries with large ports and environmental protection organizations demand strict safety guidelines in relation to underwater radiated noise. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and underwater radiated noise of a commercial ship. PFFEM is employed to analyze the vibrational responses of the commercial ship, and PFBEM is applied to analyze the underwater radiation noise. The vibrational energy of the structure is treated as an acoustic intensity boundary condition of PFBEM to calculate the underwater radiation noise. Numerical simulations are presented for the commercial ship under various frequencies, and reliable results are obtained.

A Study on Spectrum Analysis of the Underwater Noise by Engine Generating in Small Fishing Boat (소형어선의 기관의 수중소음 스펙트럼 분석에 관한 연구)

  • 최한규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.323-327
    • /
    • 1999
  • Most of the underwater noise emitted by small fishing boat are owing to vibration of main engine and generator etc.. This paper describe on the spectrum analysis of underwater noise by engine generating in small fishing boat in order to build up comfortable environment for fisheries man and to reduce ambient noise. The obtained results are summerized as follows:1. When the underwater noise of 10ton class fishing boat measure and the frequency spectrum in varied revolution of engine 750, 900, 1000rpm analyze, the frequency pattern is similar to each other, the faster revolution of engine increase, the higher frequency spectrum level becomes. 2. In comparison of spectrum level of underwater noise between 10ton class and 14ton class fishing boat, the former level is higher than the latter. 3. Frequency spectrum pattern of two 14ton class fishing boat is similar to each other but spectrum level is a little difference, it is suggested to different by fitting condition of engine.

  • PDF

Ambient Underwater Noise in the Somjin Estuary (섬진강 하구에서의 수중 환경 소음)

  • 박해훈
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.19-23
    • /
    • 1986
  • This paper describes that air noise and underwater noise in the Somjin Estuary are measured and analysed to get the basic data to find out the influence of environment on the underwater. The results obtained are summerized as follows: 1. The spectrum level of air noise in the Somjin Estuary increases until 500Hz, and decreases a little over 2KHz. 2. The spectrum level of underwater noise in the Somjin Estuary increases from 50 Hz to 1 KHz, but it decreases over 1 KHz as the depth is deeper. 3. When the influence of other factors is scarce but the influence of flowing speed is significant, the noise level seems to be higher at speedy layer than at slower layer. 4. The underwater sound level seems to be wider at speedy layer than at slower layer.

  • PDF

Implementing Framework for Transfer Function-based Ship Underwater Radiated Noise Analysis (전달함수 기반의 선박 수중방사소음 해석 프레임워크 구현)

  • Kim, Kook-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.803-807
    • /
    • 2010
  • The transfer function method is a widely used in the analysis of underwater radiated noise of ships because it is simple to implement and gives a simple way in the design stage requiring trade-off studies on various kinds of noise sources. In this study, a framework is implemented based on the transfer function method. The framework is interfaced to a software providing transfer functions of hull force to underwater radiated noise. The transfer function-based underwater radiated noise analysis approach is reviewed and the implemented framework structure is described. As an example, a numerical calculation of a virtual ship is carried out and its results are investigated in terms of applicability to real ship design project.

Transfer Function of Structure-borne Noise to Underwater Radiated Noise (고체음의 수중방사소음 전달함수)

  • 김재승;김현실;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.138-142
    • /
    • 2001
  • A comparison between theoretical and measured transfer function, which relates structure-borne noise source level to underwater radiated noise, of a naval ship is presented in this study. Transfer functions are obtained by dividing far field underwater noise by the value of structure borne noise source levels below machinery mounts. In prediction, statistical energy analysis of the whole ship structure is used to get vibration levels of wetted hull plates below water line. Then, far field radiated noise is calculated by summing up contributions from each plates using vibration levels and radiation efficiencies. And 1/3-octave band underwater sound pressure at the distance of 1 m away from the hull were measured to get experimental transfer functions. The two transfer functions are compared to show resonable agreements in spite of the subtle physical differences between each other.

  • PDF

Analysis of PLL Phase Noise Effect for High Data-rate Underwater Communications

  • Lee, Chong-Hyun;Bae, Jin-Ho;Hwang, Chang-Ku;Lee, Seung-Wook;Shin, Jung-Chae
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.205-210
    • /
    • 2011
  • High data-rate underwater communications is demanded. This demand imposes stringent requirements on underwater communication equipment of phase-locked-loop (PLL). Phase noise in PLL is unwanted and unavoidable. In this paper, we investigate the PLL phase noise effect on high order QAM for underwater communication systems. The phase noise model using power spectral density is adopted for performance evaluation. The phase noise components considered in PLL are reference oscillator, voltage controlled oscillator (VCO), filter and divider. The filters in PLL noise are assumed to be second order active and passive low pass filters. Through simulation, we analyze the phase noise characteristics of the four components and then investigate the performance improvement factor of each component. Consequently, we derive specifications of VCO, phase detector, divider to meet performance requirement of high data-rate communication using QAM under phase noise influence.

Low-Noise Preamplifier Design for Underwater Electric Field Sensors using Chopper stabilized Operational Amplifiers and Multiple Matched Transistors (초퍼 연산증폭기와 다수의 정합 트랜지스터를 이용한 수중 전기장 센서용 저잡음 전치 증폭기 설계)

  • Bae, Ki-Woong;Yang, Chang-Seob;Han, Seung-Hwan;Jeoung, Sang-Myung;Chung, Hyun-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.120-124
    • /
    • 2022
  • With advancements in underwater stealth technology for naval vessels, new sensor configurations for detecting targets have been attracting increased attention. Latest underwater mines adopt multiple sensor configurations that include electric field sensors to detect targets and to help acquire accurate ignition time. An underwater electric field sensor consists of a pair of electrodes, signal processing unit, and preamplifier. For detecting underwater electric fields, the preamplifier requires low-noise amplification at ultra-low frequency bands. In this paper, the specific requirements for low-noise preamplifiers are discussed along with the experimental results of various setups of matched transistors and chopper stabilized operational amplifiers. The results showed that noise characteristics at ultra-low frequency bands were affected significantly by the voltage noise density of the chopper amplifier and the number of matched transistors used for differential amplification. The fabricated preamplifier was operated within normal design parameters, which was verified by testing its gain, phase, and linearity.

Effectiveness Analysis Tool for Underwater Acoustics Detection in Quasi-static Underwater Acoustics Channel based on Underwater Environmental Information DB (수중 환경 정보 DB 기반 준-정적 수중음향 채널 수중음향 탐지 효과도 분석 모의 도구 구현)

  • Kim, Jang Eun;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.148-158
    • /
    • 2015
  • It is difficult to test a detection system in underwater acoustics channel environments. The system can be evaluated by using simulation analysis tool. In this paper, a simulation tool is proposed to analyze the effectiveness of underwater acoustics detection based on database for real environments. First, the underwater environment is built based on HYCOM underwater environment database. Then, a multipath characteristic is considered through calculating underwater acoustics propagation path/pressure based on the ray theory. Also, hydrophone thermal noise and underwater ambient noise are considered to reflect underwater noise characteristics.

Case study on the Prediction of Underwater Sound Pressure Level by Blasting (발파에 의한 수중음압레벨 예측 사례연구)

  • Park, Jeong-Il;Kang, Choo-Won;Noh, Young-Bae;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.81-88
    • /
    • 2011
  • Most of the blast pollution that causes complaints is noise and vibration. Hence, special attentions need to be paid to controlling the underwater noise in designing blasting for those areas. This study estimated underwater sound pressure using distance from blasting and charge per delay and underwater sound pressure level using the underwater sound pressure. To identify the validity of the estimated value, the study demonstrated the results at other areas and compared actual results with estimated results.