• 제목/요약/키워드: underwater GAN

검색결과 4건 처리시간 0.019초

Comparison of GAN Deep Learning Methods for Underwater Optical Image Enhancement

  • Kim, Hong-Gi;Seo, Jung-Min;Kim, Soo Mee
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.32-40
    • /
    • 2022
  • Underwater optical images face various limitations that degrade the image quality compared with optical images taken in our atmosphere. Attenuation according to the wavelength of light and reflection by very small floating objects cause low contrast, blurry clarity, and color degradation in underwater images. We constructed an image data of the Korean sea and enhanced it by learning the characteristics of underwater images using the deep learning techniques of CycleGAN (cycle-consistent adversarial network), UGAN (underwater GAN), FUnIE-GAN (fast underwater image enhancement GAN). In addition, the underwater optical image was enhanced using the image processing technique of Image Fusion. For a quantitative performance comparison, UIQM (underwater image quality measure), which evaluates the performance of the enhancement in terms of colorfulness, sharpness, and contrast, and UCIQE (underwater color image quality evaluation), which evaluates the performance in terms of chroma, luminance, and saturation were calculated. For 100 underwater images taken in Korean seas, the average UIQMs of CycleGAN, UGAN, and FUnIE-GAN were 3.91, 3.42, and 2.66, respectively, and the average UCIQEs were measured to be 29.9, 26.77, and 22.88, respectively. The average UIQM and UCIQE of Image Fusion were 3.63 and 23.59, respectively. CycleGAN and UGAN qualitatively and quantitatively improved the image quality in various underwater environments, and FUnIE-GAN had performance differences depending on the underwater environment. Image Fusion showed good performance in terms of color correction and sharpness enhancement. It is expected that this method can be used for monitoring underwater works and the autonomous operation of unmanned vehicles by improving the visibility of underwater situations more accurately.

Single Image-based Enhancement Techniques for Underwater Optical Imaging

  • Kim, Do Gyun;Kim, Soo Mee
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.442-453
    • /
    • 2020
  • Underwater color images suffer from low visibility and color cast effects caused by light attenuation by water and floating particles. This study applied single image enhancement techniques to enhance the quality of underwater images and compared their performance with real underwater images taken in Korean waters. Dark channel prior (DCP), gradient transform, image fusion, and generative adversarial networks (GAN), such as cycleGAN and underwater GAN (UGAN), were considered for single image enhancement. Their performance was evaluated in terms of underwater image quality measure, underwater color image quality evaluation, gray-world assumption, and blur metric. The DCP saturated the underwater images to a specific greenish or bluish color tone and reduced the brightness of the background signal. The gradient transform method with two transmission maps were sensitive to the light source and highlighted the region exposed to light. Although image fusion enabled reasonable color correction, the object details were lost due to the last fusion step. CycleGAN corrected overall color tone relatively well but generated artifacts in the background. UGAN showed good visual quality and obtained the highest scores against all figures of merit (FOMs) by compensating for the colors and visibility compared to the other single enhancement methods.

수중 선박엔진 음향 변환을 위한 향상된 CycleGAN 알고리즘 (Improved CycleGAN for underwater ship engine audio translation)

  • 아쉬라프 히나;정윤상;이종현
    • 한국음향학회지
    • /
    • 제39권4호
    • /
    • pp.292-302
    • /
    • 2020
  • 기계학습 알고리즘은 소나 및 레이더를 포함한 다양한 분야에서 사용되고 있다. 최근 개발된 GAN(Generative Adversarial Networks)의 변형인 Cycle-Consistency Generative Adversarial Network(CycleGAN)은 쌍을 이루지 않은 이미지-이미지 변환에 대해 검증된 네트워크이다. 본 논문에서는 높은 품질로 수중 선박 엔진음을 변환시킬 수 있는 변형된 CycleGAN을 제안한다. 제안된 네트워크는 수중 음향을 기존영역에서 목표영역으로 변환시키는 생성자 모델과 데이터를 참과 거짓으로 구분하는 개선된 식별자 그리고 변환된 수환 일관성(Cycle Consistency) 손실함수로 구성된다. 제안된 CycleGAN의 정량 및 정성분석은 공개적으로 사용 가능한 수중 데이터 ShipsEar을 사용하여 기존 알고리즘들과 Mel-cepstral분포, 구조적 유사 지수, 최소 거리 비교, 평균 의견 점수를 평가 및 비교함으로써 수행되었고, 분석결과는 제안된 네트워크의 유효성을 입증하였다.

Sonar-based yaw estimation of target object using shape prediction on viewing angle variation with neural network

  • Sung, Minsung;Yu, Son-Cheol
    • Ocean Systems Engineering
    • /
    • 제10권4호
    • /
    • pp.435-449
    • /
    • 2020
  • This paper proposes a method to estimate the underwater target object's yaw angle using a sonar image. A simulator modeling imaging mechanism of a sonar sensor and a generative adversarial network for style transfer generates realistic template images of the target object by predicting shapes according to the viewing angles. Then, the target object's yaw angle can be estimated by comparing the template images and a shape taken in real sonar images. We verified the proposed method by conducting water tank experiments. The proposed method was also applied to AUV in field experiments. The proposed method, which provides bearing information between underwater objects and the sonar sensor, can be applied to algorithms such as underwater localization or multi-view-based underwater object recognition.