
1. Introduction

Optical images generated by the reflected light from an object are 

useful and intuitive for visual monitoring in unknown underwater 

environments. On the other hand, reflected light is typically scattered 

and absorbed by water and floating particles. This light attenuation 

causes low visibility with haziness and color cast in the resulting 

optical image (Mobley, 1994). The color cast effect produces a 

greenish or bluish hue in underwater optical images due to different 

attenuations depending on the light wavelength. Red light is attenuated 

more than green and blue light because of its longer wavelength. 

Depending on the transmission distance, water attenuation can cause 

limited visibility due to the loss of light intensity and contrast.

Considerable efforts have been made to compensate for the limited 

visibility and color cast effect of underwater optical images. The focus 

of most studies is on estimating a distance map because light 

attenuation of a specific wavelength is dependent on the distance from 

the camera. Stereo imaging has been used in some studies to obtain a 

distance map or enhance image quality directly (Roser et al., 2014; 

Zhang et al., 2014). Stereo imaging has been used to recover 

underwater images through a physical image formation model and an 

estimated distance map. One other approach has enhanced the 

underwater image by utilizing multi-directional light sources and 

fusing these different light images (Treibitz and Schechner, 2012). 

This study focused solely on single image enhancement as opposed to 

multi-images. This is because the utilization of multi-image 

enhancements requires additional hardware devices that are not 

available as a general imaging platform in the context of an underwater 

environment.

Single image enhancement improves image quality using the 

information extracted from a given underwater image. A single image 

enhancement technique is to adopt prior physical knowledge of light. 

Dark channel prior (DCP) is popular and was proposed to improve the 

haze of outdoor images using a light transmission map estimated from 

the darkest color channel (He et al., 2011). DCP has been applied 

widely to remove the turbidity of underwater images. On the other 

hand, it is imperfect for estimating a light transmission map due to 

nearly zero red channel values in the underwater environment. 
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Underwater DCP estimates light transmission, excluding the red 

channel (Drews et al., 2013). For single image enhancement, the 

maximum intensity prior calculates the difference between the 

maximum values of red, green, and blue channels to estimate the light 

transmission map (Carlevaris-Bianco et al., 2010). 

Domain transform methods were applied to single image 

enhancement. A homomorphic filter was used to help suppress noise 

and amplify details in the image frequency domain (Luo et al., 2019). 

The wavelet transform has been used for denoising (Jian and Wen, 

2017) or fusing images (Khan et al., 2016; Wang et al., 2017a). The 

gradient-domain transform method has been found to recover the 

original gradient instead of the image intensity itself based on the 

image formation model (Li et al., 2012; Mi et al., 2016; Park and Sim, 

2017; Zetian et al., 2018). Typical image processing techniques have 

been applied for contrast and turbidity enhancements. Multiple image 

processing steps have been established to improve the contrast, noise, 

and color successively (Arnold-Bos et al., 2005; Bazeille et al., 2006; 

Ghani and Isa, 2014; Ghani and Isa, 2015). The image fusion method 

was also proposed to combine the characteristics enhanced in multiple 

image processing steps (Ancuti et al., 2017). The combined technique 

of domain transform and fusion was proposed to dehaze general color 

images in air (Cho et al., 2018).

Recent research has found that deep neural networks for underwater 

optical imaging can enhance underwater images directly (Anwar et al., 

2018; Fabbri et al., 2018; Guo et al., 2019; Hou et al., 2018; Li et al., 

2019a; Li et al., 2019b; Sun et al., 2018; Uplavikar et al., 2019; Wang 

et al., 2017b) or estimate inherent information, such as background 

light intensity and transmission maps (Cao et al., 2018; Li et al., 

2018a; Li et al., 2018b). Training convolutional neural networks 

require huge pairs of underwater images and clean images, but clean 

images are difficult to obtain in an underwater environment. 

Therefore, some researchers have used indoor datasets of color images 

and the corresponding depth information (Anwar et al., 2018; Cao et 

al., 2018; Hou et al., 2018; Uplavikar et al., 2019) or applied 

unsupervised networks, such as a generative adversarial network 

(GAN), to produce the image pairs (Fabbri et al., 2018; Guo et al., 

2019; Li et al., 2019b). A detailed review of underwater image 

enhancement techniques can be found elsewhere (Anwar and Li, 2019; 

Wang et al., 2019; Yang et al., 2019). 

In this study, six single image enhancement methods were 

considered: original DCP, gradient transform method with Tarel’s and 

Peng’s transmission maps, image fusion of successive three image 

processing steps, and two GANs. Although original DCP and Tarel’s 

methods were designed to enhance the haze outdoor environments, 

they were applied to underwater images because underwater images 

suffer from haziness. The gradient-domain transform was selected 

from the domain transform methods available because it simplifies the 

image formation model, and two different methods proposed by Tarel 

and Hautière (2009) and Peng and Cosman (2017) were applied to 

estimate a transmission map. Peng and Cosman (2017). proposed 

specific ways to estimate a depth map and background lights 

considering the underwater environments. The image fusion method 

should be an effective way to improve by combining appropriate 

image processing techniques. Two GANs, CycleGAN and underwater 

GAN, which are designed for underwater image enhancement, were 

applied because GAN is a new remarkable deep learning algorithm for 

various applications of image processing. The enhancement 

performance was assessed quantitatively in terms of underwater image 

quality measure (UIQM) considering the colorfulness, sharpness, and 

contrast, underwater color image quality evaluation (UCIQE) 

considering color saturation, chroma, and contrast and gray world 

(GW) assumption as color correction metrics, and blur metric. The 

comparison results would help other researchers better understand the 

advantages and disadvantages of single image enhancement methods 

for their studies.

This paper is organized as follows. Section 2 describes the single 

image enhancement methods considered in this study. Qualitative and 

quantitative comparisons are reported in Section 3. Sections 4 and 5 

discuss the results and outline the conclusions of this study.

2. Single Image Enhancement

The light transmitted through water can be defined by the simple 

image formation model as follows (Fattal, 2008): 

   (1)

where  is the measured light intensity;  is the recovered original light 

intensity;  is the light transmission map, and  is the uniform 

background light. The intensity is conventionally expressed with three 

representative color channels: red (R), green (G), and blue (B). The 

single image enhancement method was considered for the recovery of 

the original light intensity. The information is derived solely from a 

single underwater image using this method. This includes methods that 

derive the transmission map and the background light to solve Eq. (1) 

with observation-based assumptions and those that combine 

conventional image processing techniques to enhance the deteriorated 

underwater color image quality. Recently, deep learning has been the 

center of research attention with regard to image enhancement. This 

section describes the DCP, gradient transform, image fusion, and two 

GAN methods for single image enhancement.

2.1 Dark Channel Prior Enhancement

He et al. (2011) reported that at least one of the R, G, B-color 

channels in a pixel tends to approach zero in a colorful image. They 

proposed DCP to estimate the transmission from the darkest color 

channel in a local patch of given observed light, . The dark channel 

image,  , of a clean original image can be defined by the minimum 

operator (min[ ]) over a local patch and three color channels. This will 

approach zero according to DCP as follows:

   ∈ min ∈min  ≃ (2)
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where  indicates each color channel in an image, and Ω is a local 

patch centered at . The patch size is a key parameter determining the 

performance of DCP enhancement. The transmission can be estimated 

by substituting the dark channel image in Eq. (2) into Eq. (1), as 

follows:

  



∈ min 



∈min 





 






 (3)

The intensity of background light was first determined from the dark 

channel () of the underwater image,  , reflecting the amount of 

haziness in an underwater image. The pixel with the highest intensity 

in   was chosen as the background light among candidates in the top 

10 percent of the brightest pixels in  . The initial transmission was 

estimated using the background light and   It was then refined 

using a soft matting operator to reduce the halo effect around the 

edges. Finally, the enhanced image was recovered with the refined 

transmission, , as follows:

  max


 (4)

where ε  is the lowest transmission value and was set to 0.1 to avoid the 

zero denominator. The smaller patch size was used to estimate the 

initial transmission where the higher color saturation appeared in the 

final image ( ). The large patch size produced a halo effect around the 

edges. In this paper, the same patch size of 15×15 was used for all 

underwater images.

2.2 Gradient Transform Enhancement

The gradient transform method was derived by adopting a gradient 

of Eq. (1) (Li et al., 2012). Assuming that the transmission is constant 

in a local patch, the gradient of  may be represented simply as 

follows:

‖∇‖≈‖∇‖ (5)

The gradient transform method estimates the transmission for 

obtaining the original image gradient, ∇, from a given ∇. The 

enhanced original image,  , was then reconstructed from its gradient, 

∇, via the Poisson equation solver assuming Dirichlet boundary 

conditions. Based on the calculus of variations, the cost function can 

be defined using Eq. (6) to recover the image intensity from its 

gradient:

∇
argmin ∬F∇J ∇Jdxdy

∇
argmin ∬‖∇∇ ‖ (6)

where   is an estimate of  and can be determined by minimizing the 

integral of the difference between the derivatives of  and  , as 

follows:

Table 1 Image reconstruction from a given gradient

Workflow of image recovery from a given gradient

(1) Compute ∇ and ∇

∇≃∇ ∇ ∇ ∇  

∇≃

(2) ∇∇

(3) Discrete sine transformation of : Ψ  
(4)   cos ⁄cos⁄

 

(5) Compute inverse the discrete sine transform of Ψ  
(6) Reconstruction:  









 






 


  (7)

The Euler-Lagrange equation was adopted to minimize the integral of 

(  ) in (6) and the Poisson equation in Eq. (8) was then derived from 

Eq. (7): 

∇ ∇ (8)

Here, ∇  is Laplacian operator, and  is the divergence operator. 

Using the Dirichlet boundary condition, a boundary image,  of   

was defined as containing all zero pixel values, except for the 

boundary pixels of  . Table 1 lists the estimated final recovered 

image,  , from the Poisson equation (Simchony et al., 1990).

This paper considered two transmission estimation methods. Tarel 

and Hautière (2009) proposed patch-based processing, such as DCP, 

and adopted the Median operator Along Lines (MAL). This preserves 

the edges without the halo effect as well as the corners, unlike the 

classical median operator, as shown in Eq. (9):

 
∈
MAL  min     

 ∈ MAL  min  

  max min  min    (9)

Ω was defined as the line segments over a square patch centered at 

. Each line segment must pass through the center of the square patch. 

The MAL performs a classical median filter along each line segment 

and then calculates the median of the median values of each line 

segment. The number of line segments and the patch size are key 

parameters determining the enhancement performance. This study set 

five line segments and a 61×61 patch size.

Peng and Cosman (2017) estimated the transmission from a depth 

map based on image blurriness and light absorption by water and 

floating particles and the attenuation coefficients () corresponding to 

RGB colors, as follows:
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  
   ∈ (10)

The depth map,  can be calculated with two relative depth 

estimates,   and  . This is based on different light absorption 

phenomena of RGB colors and the mixed additional distance 

information relative to the closest distance as follows:

      (11)

where   is a scaling constant to convert the sum of two depth 

estimates to the actual distance in meters and was set to 8 m.   

represents the normalized closest distance from the underwater camera 

to the scene, as follows:

   
max


max  
  


 (12)

 indicates the color channel with a maximum absolute difference 

between the background light and the input intensities.


 
was determined using three depth-related values accommodating 

the different attenuations of RGB color signals and blurriness of the 

underwater image, as follows:

       (13)

The mixing weights,  and  were determined from the average 

intensities of background light and the red channel in the input image 

as follows:




 
mean 


  


 
mean  


(14)

  and  , expressed by Eqs. (15) and (16), respectively, were 

estimated assuming that the intensity of the red channel ( )easured 

increased as the scene point to the camera became closer.

   ∈ max  ∈ max     (15)

    ∈ max    (16)

The local patch size was set to 5×5 in max[ ] operator.  [ ] 

normalizes the input value in the range of 0 to 1.   is estimated by 

the blurriness in the underwater image as follows: 

    Fill     (17)

Blurriness was defined by the mean of edge information extracted at 

various Gaussian kernel sizes, as follows: 

    
max 



∑  

  Gauss   (18)

  is a gray-scaled image of the underwater color image.  is a 

Gaussian filter with a kernel size, σ of  at different kernel levels, 

  ⋯.  was set to 4. Fill[ ] operator performs a morphological 

opening to compensate for the sparse regions and holes in   to 

become denser (Vincent, 1993). Calculation of background light 

intensity is required to determine the closest distance and the mixing 

weights. The background light intensity was determined by combining 

the maximum and minimum of the three background light 

components, 
 , 

 , and 
 , as expressed in Eq. (19): 

  ∙max  min  
(19)


  is the mean value of the input image pixels, which correspond to 

the same locations of the top 0.1% pixels of an image blurriness map, 

  softmat Fill  .   and 
  are mean values of the 

input image pixels belonging to sub-regions that have the largest mean 

in   and the lowest variance in the input image, respectively. The 

sub-regions were selected through an iterative process where an image 

was divided into four quadrants, and the region with the largest mean 

and the lowest variance among the quadrants were selected. This 

iteration continues until the quadrant size is 1,024 times smaller than 

the initial image. γ is the weight calculated by the exponential of the 

rate of pixels greater than 0.5, as shown in Eq. (20): 

 


      


(20)

First, the transmission of the red channel,  , was determined using 

the estimated distance map in Eq. (11), background light in Eq. (19), 

and the attenuation coefficient,  , was set to 1/7 for Ocean Type-I 

water (Zhao et al., 2015). The attenuation coefficient ratios between 

the red and other colors were used for transmission conversion from 

red to blue and green colors as follows:

    




  
 

  

 ∈ (21)

The wavelengths, λ of the red, green and blue colors are 620, 540, and 

450 nm, respectively.

2.3 Image Fusion Enhancement

Image fusion enhances features in an image and fuses the enhanced 

images (Ancuti et al., 2017). This consists of three processing steps: 

white balancing, feature enhancing, and image fusing. In the image 

fusion method, white balancing compensates the red and blue signals 

giving them flatter distributions compared to the green signal, which 

tends to maintain its intensity through water somewhat. 


  


  ∈ (22)
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where   is a white-balanced image for the red and blue channels. 


  is an average value across all image pixels for each color 

channel.

After white balancing to correct for color casting by water, two 

feature enhancing techniques were applied independently. First, 

contrast-limited adaptive histogram equalization (CLAHE) was 

adopted instead of gamma correction in the original method to enhance 

image contrast  . CLAHE performs an ordinary histogram 

equalization over the predefined patch with a limited clip level. The 

parameters of CLAHE are the patch size, Ω, and a histogram clip level, 

. Furthermore, unsharp masking was applied to sharpen features, 

such as an edge in an image, as follows:

     Gauss  (23)

Three weight maps of Laplacian contrast, saturation, and saliency 

were determined to fuse two images enhanced from the previous step. 

The Laplacian contrast weight map, ω , depends on global contrast 

in an image and was calculated as the absolute value of the Laplacian 

filtered luminance signal of each enhanced image, as follows: 


   

Laplacian   ∈ (24)

where   is the luminance channel of an image. The kernel size, σ, of 

the Laplacian filter was set to 3×3. The saturation weight map, ω , 
reflects chromatic information in an image and was defined by the 

average difference between the luminance and three-color signal, as 

follows:


 




∑∈  (25)

The saliency weight map, ω, represents the prominent features of an 

image in CIELAB color space (Achantay et al. 2009), and can be 

expressed using Eq. (26): 


 ∑∈    

mean  Gauss  (26)

The Gaussian kernel size was set to 3×3. The final weight map for each 

enhanced image from the previous step, combined three weight maps 

with normalization, as follows: 

 
 






(27)


 

 
 

 . To fuse two enhanced images,    

and   , with the corresponding weights, ω  and ω , 
multiscale fusion was applied to avoid artifacts in the low-frequency 

components of the fused image. Multiscale fusion performs Laplacian 

 and Gaussian  pyramids repetitively on the enhanced images 

and the weight maps, as shown in Eq. (28): 

  ∑
∑


 (28)

The Laplacian pyramid at each lth level quantifies the difference 

between an input image and its Gaussian filtered image after 

sampling-down the operation by a factor of 2. The size of the Gaussian 

kernel in the pyramid computation was set to 5×5. The number of 

pyramid levels, , was set to 3.

2.4 Generative Adversarial Network Enhancement

A convolutional neural network is a widely used deep learning 

network for many image processing applications. Robust training in a 

deep learning network requires huge datasets and a reliable ground 

truth. On the other hand, it is difficult to construct ground truth for 

underwater color images. Fabbri et al. (2018) proposed underwater 

GAN (UGAN) to increase the reliability of synthetic training data and 

enhance underwater color imagery using synthetic data. GAN typically 

consists of the generator and discriminator networks, and the training 

process is performed by optimizing the loss function in Eq. (29): 


min


max log  log  (29)

The generator network (G) competes against discriminator (D) during 

training to generate exquisite fake images and deceive the 

discriminator. The discriminator is trained to distinguish a fake image 

from a generator. The loss function of UGAN was defined with the 

Wasserstein GAN loss function and gradient penalties.

ℒ  
min


maxℒ ℒ ℒ (30)

Wasserstein loss function, ℒ , was proposed to solve the training 

issue induced by the general GAN loss function, which measures a 

difference between real and generated data distributions in Eq. (29) 

(Arjovsky et al., 2017). ℒ  is expressed as follows: 

ℒ ‖∇ ̂‖   (31)

The weight, η  was set to 10. ℒ  is defined by the L1-norm of the 

difference between the ground truth and the image predicted, , by 

the generator, as follows:

ℒ ‖‖  ‖‖  (32)

ℒ  is a function with respect to the gradient difference between the 

ground truth and the predicted image (Mathieu et al. 2015), as follows: 

ℒ ∑ 
 

 
 

  (33)



Single Image-based Enhancement Techniques for Underwater Optical Imaging 447

The hyper-parameters, η  and η  were set to 100 and 1, respectively.

Fig. 1 summarizes the architecture of the discriminator and 

generator networks of UGAN. The discriminator network adopted 

the PatchGAN model (Isola et al., 2017) that was comprised of five 

convolutional layers, and the resulting output feature map was 

32×32. Each convolutional layer of the PatchGAN model performs 

the convolution operation, followed by ReLU activation. The 

generator has a U-Net model consisting of encoder and decoder 

sections in a U-shape (Ronneberger et al., 2015). The encoder and 

decoder sections in U-Net have eight convolutional and seven 

deconvolutional layers, respectively. Each convolutional layer of the 

U-Net model performs successive convolutions with a 4×4 kernel 

and stride of 2, batch normalization, and leaky ReLU activation. The 

deconvolution layer also includes a 4×4 convolution kernel with a 

stride of 2 and ReLU activation, without batch normalization. The 

outputs from the second to seventh convolutional layers were 

connected to the outputs of deconvolutional layers in U-Net. UGAN 

was trained with the paired synthetic datasets of underwater and 

clean ground truth images. To construct the paired datasets, an 

unsupervised network, cycleGAN, was applied to a mapping 

function of clean to underwater images:   ⟶ (Zhu et al., 2018). 

CycleGAN consists of a Resnet-9 block generator and a PatchGAN 

discriminator outputting a 70×70 feature map. CycleGAN was 

trained with two batches and 100 epochs using 6,050 clean images 

and 5,202 underwater images. This included 1,813 images from 

ImageNet (Deng et al., 2009) and 3,389 real images taken in Korean 

waters. The trained cycleGAN generated pairs of clean and 

underwater images where 5,202 underwater images were used for 

training. From the paired training images, UGAN was trained with 

32 batches and 20 epochs.

Fig. 1 UGAN network architecture: The generator transforms an 

underwater image into a fake clean image through a 

u-shape network consisting of an encoder and decoder. 

The discriminator takes the generated image as input and 

produces a 32×32 patch image to distinguish between the 

real clean image and the fake clean image.

3. Results 

The performances of the DCP, two gradient transform methods, 

image fusion, cycleGAN, and UGAN were compared by evaluating 

the image quality of real underwater images taken in Korean waters. 

The enhancement was evaluated quantitatively based on UIQM, 

UCIQE, GW assumption, and blur metric. 

UIQM was calculated using the weighted sum of colorfulness 

(UICM), sharpness (UISM), and contrast (UIConM) measures 

(Panetta et al., 2016). This study used the same weighting as Panetta et 

al. (2016); = 0.0282, = 0.2983, and = 0.0339. The computation 

of UIQM is expressed in Eq. (34):

UIQMUICMUISMUIConM (34)

UICM was measured by the mean and standard deviation in two 

combined color domains of the image to be evaluated; red-green and 

yellow-blue colors, as follows:

UICMrg yb rg yb (35)

In the combined color domains,      and     . 

  and σρ  are the mean and standard deviation of   and .  is a 

ratio to trim the upper and lower intensity pixels. The UISM sharpness 

was evaluated based on the weighted sum of the difference between 

the maximum and minimum values in the edge map for each color 

channel, as shown in Eq. (36). The edge map was determined by the 

Sobel operator as follows:

UISM∑ EME Sobel  (36)

EME   
 ∑  

 log


min  
max  


 (37)

where δ is a weight for each color channel. δ= 0.299; δ= 0.587; δ=
0.114. EME[ ] divides the edge image, Sobel , into  sub-blocks 

and calculates the logarithmic difference between the maximum and 

minimum values for each sub-block. It then outputs the mean of the 

difference in values over the sub-blocks. UIConM divided a 

gray-scaled image,   into  sub-blocks and then calculates the 

parameterized logarithmic image processing operators, , ⊕, and ⊗ 

(Panetta et al., 2011), as follows:

UIConM N

⊗∑n  lN
max ⊕min  
max min  

         ×logmax ⊕min  
max min   (38)

UCIQE is calculated by a weighted sum of three measures in terms 
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of the chroma (σ ) and luminance ( ) in CIELAB color space 

and saturation () (Yang and Sowmya 2015), as expressed in Eq. 

(39):

UCIQE  conLum  sat (39)

In CIELAB color space,  of an image, the standard deviation of 

chroma (σ ) was calculated by   . The contrast in the 

luminance channel (conLum ) was determined by the mean value 

difference in the top 1% and bottom 1% of pixels in the luminance 

channel, IL,top_1% ‒ IL,bottom_1%, respectively. The saturation measure 

() was calculated by  . The weighting for chroma, 

luminance, and saturation in UCIQE was set to =0.4680, =0.2745, 

and =0.2576, respectively. Larger UIQM and UCIQE values 

indicate better enhancement performance. 

The GW assumption is that an equal mixture of RGB color channels 

should be neutral gray under a color-balanced situation. An 

underwater GW assumption was used to measure the degree of color 

correction (Berman et al., 2018). Here, the calculation process for the 

GW value was modified with a standard deviation over three mean 

color values. The color balance improves as the GW becomes lower, as 

follows: 


∑∈  (40)

The blur metric is derived based on observing that humans find it 

difficult to perceive differences between a blurred and re-blurred 

image (Crété-Roffet et al., 2007). The blur measure compares the 

horizontal and vertical derivatives of an input and its blurred images 

by the max operator. Blur metric was normalized from 0 to 1; a larger 

blur metric value indicated more blurring.

 max




 


  


 (41)

Directional sum, difference, and derivative operators were applied to 

input () and its blurred images     in the luminance 

channel according to Eqs. (42) and (43). The [  ] operator averaged 

nine elements horizontally and vertically.

   ∇   ∈ (42)

   max∇   ∇    (43)

If the input image already has high blurriness, the difference between 

the directional derivatives of the input and blurred image would be 

small, resulting in a larger blur metric value.

Figs. 2 to 4 present images enhanced using single enhancement 

methods from real underwater images. Three underwater images were 

captured with a dominant greenish color tone and exposure to a strong 

light source from standard definition (SD) videos recorded in the late 

afternoon. Figs. 2 and 3 were taken in May 2015 at Jangmok Port, 

Geoje-si, Gyeongsangnam-do using a camera equipped with a Pro 4 

ROV (VideoRay, USA). Fig. 4 was recorded in November 2017 at 

Yokjido, Tongyeong-si, Gyeongsangnam-do, using an SD camera 

equipped with a BlueROV (BlueRobotics, USA). All scenes were 

illuminated by LED lighting equipped in the ROVs. DCP, (b) in Figs. 2 

to 4, tends to emphasize a green color in the overall scene and darkens 

the background signal. DCP was ineffective in correcting the greenish 

color cast effect, which is the main artifact of underwater imagery. 

Gradient transform with Tarel and Peng transmissions were sensitive 

to the brightness change in an underwater image, as shown in (c) and 

(d) of Figs. 2–3. This was also found to be ineffective in enhancing the 

object details, as illustrated in Figs. 4(c) and (d). Two gradient-Tarel 

and Peng inadequately corrected for the overall greenish color tone in 

all underwater images. Image fusion moderately compensated for the 

overall color tones in (e) of Figs. 2 to 4. On the other hand, it did not 

enhance the image contrast of objects or reduce the haziness in the 

background. CycleGAN provided good correction of the overall colors 

Fig. 2 (a) Real original underwater image of 481×416, showing a 

dominant greenish color tone and exposure to strong light 

at the top, and the enhanced images by (b) DCP, (c) 

gradient-Tarel, (d) gradient-Peng, (e) image fusion, (f) 

cycleGAN, and (g) UGAN.

Fig. 3 (a) Real original underwater image of 481×416, showing a 

dominant greenish color tone and expose to strong light in 

the middle, and the enhanced images by (b) DCP, (c) 

gradient-Tarel, (d) gradient-Peng, (e) image fusion, (f) 

cycleGAN, and (g) UGAN.
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Fig. 4 (a) Real original underwater image of 711×406, showing 

low contrast and visibility, and the enhanced images by 

(b) DCP, (c) Gradient-Tarel, (d) Gradient-Peng, (e) Image 

fusion, (f) CycleGAN, and (g) UGAN.

and enhanced the object details, but it generated artifacts in the 

background, as shown around objects in Fig. 3(f). UGAN provided 

good visual quality in terms of compensating for the greenish color 

tone, enhancing the object details, and reducing haziness comparing to 

the other enhancement methods in (g) of Figs. 2 to 4.

Tables 2 to 4 compare the figures of merit (FOM), i.e., UIQM, 

UCIQE, GW, blur metric, and computational time, evaluated from the 

original and the enhanced underwater images in Figs. 2 to 4. UIQM 

and UCIQE were difficult to interpret because they focus on different 

aspects depending on the example image. Unlike a visual comparison, 

two gradient transform methods and DCP obtained a high UIQM and 

UCIQE for Figs. 2 and 3. For all underwater images, DCP obtained the 

highest UCIQEs for Figs. 2 and 3 because of high color scores with 

respect to σ , and  . This might be due to DCP’s tendency to 

increase the saturation of underwater images for a specific color. 

Gradient transform methods tended to emphasize the bright region 

exposed to light, which increases the sharpness and contrast score. 

Thus, two gradient transform methods had the highest UIQM and 

UCIQE because of the high sharpness (UISM) and contrast (conLum ) 

measures, respectively. Image fusion had the best and the worst scores 

in terms of the GW color quality and blur metrics, respectively. This 

shows that image fusion is effective in balancing underwater colors, 

but makes the images blurry. CycleGAN and UGAN showed high 

UIQM and UCIQE in all figures. Furthermore, the two GANs had 

better GW scores than the original underwater images and the same 

blur scores as the original image for Figs. 2 and 3. Marginal 

differences were observed between the two GANs in terms of all 

FOMs for Figs. 2 and 3. In terms of Fig. 4, UGAN had higher UIQM 

and GW scores than cycleGAN. The computational time associated 

with each enhancement method was compared on an Intel Core 

i7-7700HQ CPU. The training time of cycleGAN and UGAN are 

approximately 46 hours and 12 hours on a Nvidia Quadro P4000 GPU, 

respectively. The two GANs ran on Python with the Tensorflow 

framework. The other methods ran on MATLAB. Image fusion and 

two GANs had the best and moderate computational time 

performance, respectively, compared to the other single enhancement 

methods.

4. Discussion

This study applied single image enhancement approaches, DCP, 

gradient transform method with Tarel and Peng transmission maps, 

image fusion, and two GANs of cycleGAN and UGAN, to compensate 

for the color cast effect and low visibility due to the light attenuation 

underwater. The enhanced performance was evaluated in terms of 

UIQM, UCIQE, GW, and blur metrics with real underwater images 

taken in Korean waters. 

The original DCP was proposed to improve the hazy outdoor images 

by saturating the inherent color in a haze-free image. Saturation with a 

specific color produced strong greenish or bluish hues on the 

underwater image; both are already dominant color tones in 

underwater images. In DCP, the user needs to adjust the patch size of 

the min operator in Eq. (3). The DCP result was evaluated with 

different patch sizes of 11×11 to 21×21 with intervals of 2; however, 

there were no different effects on color correction depending on patch 

sizes. 

The gradient transform method recovers the underwater image from 

its gradient enhanced with an estimated transmission map and the 

gradient of the given input image. The gradient transform method with 

Table 2 Figure of merits and computational time of original 

underwater image in Fig. 2 and single enhancements

UIQM UCIQE GW
Blur 

metric
Computational 

time (s)

Original 2.20 29.20 0.052 0.36 -

DCP 2.62 33.40 0.094 0.36 13.3

Gradient-
Tarel

4.29 31.06 0.043 0.31 12.3

Gradient-
Peng

4.41 31.27 0.040 0.30 11.4

Image fusion 2.42 28.72 0.013 0.55 1.1

CycleGAN 2.25 29.06 0.024 0.35 1.5

UGAN 3.13 29.11 0.019 0.35 3.5

Table 3 Figure of merits and computational time of original 

underwater image in Fig. 3 and single enhancements

UIQM UCIQE GW
Blur 

metric
Computational 

time (s)

Original 1.69 22.34 0.059 0.30 -

DCP 2.50 27.40 0.076 0.31 12.7

Gradient-
Tarel

4.64 26.44 0.054 0.25 14.3

Gradient-
Peng

4.87 27.96 0.054 0.24 12.3

Image fusion 2.03 22.11 0.008 0.50 0.7

CycleGAN 3.34 24.40 0.019 0.29 1.4

UGAN 4.09 27.92 0.029 0.32 3.5
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Table 4 Figure of merits and computational time of original 

underwater image in Fig. 4 and single enhancements

UIQM UCIQE GW
Blur 

metric
Computational 

time (s)

Original 0.48 12.12 0.008 0.44 -

DCP 1.13 22.38 0.033 0.44 18.6

Gradient-
Tarel

1.27 16.61 0.005 0.43 20.0

Gradient-
Peng

1.48 18.22 0.016 0.43 17.8

Image fusion 1.15 15.00 0.001 0.60 0.9

CycleGAN 1.62 26.06 0.071 0.44 1.4

UGAN 2.97 26.93 0.013 0.49 3.6

Tarel and Peng transmissions produced bright regions that appear as 

though they are exposed to strong light in Figs. 2 and 3. This method 

was also ineffective in reducing the color-cast effect and low visibility 

of underwater images. The adjustable parameters in the Tarel 

transmission estimation are the number of line segments and a patch 

size in Eq. (9). Successive numbers of line segments from 3 to 8 and 

different patch sizes from 41×41 to 101×101 in intervals of 20 were 

applied. On the other hand, there were no significant differences 

between the final enhanced images with different adjustable 

parameters. An estimation of Peng transmission can depend on the 

patch size for depth-related values in Eqs. (15) and (16) and the 

number of Gaussian kernel levels in Eq. (18). This study examined the 

dependency on different patch sizes from 5 to 17 in intervals of 3 and 

found little dependency on the patch size. 

Image fusion had the worst blur scores in Figs. 2 to 4 and resulted in 

a loss of object detail. It contained a contrast enhancement step, which 

was replaced with CLAHE instead of gamma correction. The blurry 

results were attributed to the last fusion step, with multiple levels of 

Laplacian and Gaussian pyramids. When more than three levels of 

pyramids were set, the final result increased the blurriness. In contrast, 

small pyramid level numbers resulted in noisier images.

  ∑ 
 ∈ (44)

If naïve fusion is performed, as per Eq. (44), there is an increase in 

the sharpness of underwater images compared to multiscale fusion, but 

it produces random pattern artifacts in the background.

GAN might be affected by the generality of the training data to 

express underwater color images. Training data were constructed with 

ImageNet and real underwater images taken in Korean waters to 

identify the turbidity and color cast. The inclusion of real underwater 

imagery in Korean waters improved the color tone and visibility 

compared to the training data in the ImageNet database. The 

pre-trained cycleGAN was applied to improve underwater image 

quality and generate underwater and clean image pairs for training 

UGAN. CycleGAN and UGAN were compared to confirm the 

performances of unsupervised and supervised learning for single 

image enhancement because they do not require additional data, such 

as a depth map for training. CycleGAN had incomplete enhancement 

performance producing artifacts in the background. UGAN acted 

moderately to enhance the color balance and visibility of underwater 

images compared to the other enhancement methods, but it was not 

effective in dehazing the underwater images. To enhance visibility, a 

new network architecture needs to be constructed and trained with the 

paired underwater images and additional information like depth maps 

(Li et al., 2018b).

UIQM and UCIQE are popular FOMs used in studies of underwater 

enhancement. The method to combine three quality measures in 

UIQM and UCIQE is dependent on the weights in Eqs. (34) and (39). 

On the other hand, there were no proposed ways to determine the 

weights properly. In this study, it was difficult to interpret the general 

tendencies of UIQM and UCIQE because these FOMs fluctuated in 

each case by case, and the quantitative interpretations based on the 

scores were different from the visual comparisons. It is necessary to 

normalize the individual image quality measure of UIQM and UCIQE 

and to set reasonable weights to evaluate the overall image quality 

adequately. The GW assumption and blur metric were adopted to 

evaluate color balancing and blurriness in the enhanced underwater 

image. Individual FOMs, such as GW and blur metrics, reflected the 

consistent quantitative image quality measures compared to the 

combined FOMs of UIQM and UCIQE for underwater images.

5. Conclusions

In this study, six single underwater image enhancement approaches 

were compared: DCP, two gradient transforms, image fusion, and two 

GANs. The enhancement performances were evaluated qualitatively 

and quantitatively. DCP caused saturation of the underwater images to 

either a greenish or bluish color tone and reduced the brightness of the 

background signal. The gradient transform methods with two 

transmission maps were sensitive to the light source and highlighted 

the region exposed to light. Image fusion provided reasonable color 

correction, but the object details were lost due to the last fusion step. 

CycleGAN corrected the overall color tone well, but generated 

artifacts in the background. Although UGAN was not rated with the 

best scores for three sample images, it showed fairly good visual 

quality and quantitative scores for all FOMs.
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