• Title/Summary/Keyword: understanding meiosis

Search Result 9, Processing Time 0.02 seconds

A Study on Effect of Meiosis Background Concepts on the High School Students' Understanding of Meiosis

  • Kim, Young-Ju;Lee, Tae-Sang;Kim, Young-Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.7
    • /
    • pp.908-919
    • /
    • 2010
  • The objectives of this study were to investigate what kind of background concepts is necessary to help that high school students easily understand meiosis and to find out how these background concepts affect students' understanding of meiosis. To achieve these objectives, first this study surveyed meiosis background concepts that high school teachers think. Based on 8 background concepts - nuclear phases, chromosome, mitosis, reproduction, gamete, gene, mother/daughter cell - of previous survey, the questionnaire was made for the 10th(724) and 11th(862) grade students and then was analyzed for the effect of meiosis background concepts on the high school students' understanding of meiosis. Results of the analysis revealed that the influential background concepts are as follow; cell cycle, chromosome in the advanced level, mother/daughter cell, mitosis, chromosome, nuclear phases in the intermediate level, mother/daughter cell, nuclear phases, gene in the low level. And the achievement according to item types was differed not by meiosis achievement, but by each background concepts.

Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis

  • Kim, Heejin;Choi, Kyuha
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.273-283
    • /
    • 2022
  • During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.

Functions of somatic cells for spermatogenesis in stallions

  • Muhammad, Shakeel;Minjung, Yoon
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.654-670
    • /
    • 2022
  • Spermatogenesis and testis development are highly structured physiological processes responsible for post-pubertal fertility in stallions. Spermatogenesis comprises spermatocytogenesis, meiosis, and spermiogenesis. Although germ cell degeneration is a continuous process, its effects are more pronounced during spermatocytogenesis and meiosis. The productivity and efficiency of spermatogenesis are directly linked to pubertal development, degenerated germ cell populations, aging, nutrition, and season of the year in stallions. The multiplex interplay of germ cells with somatic cells, endocrine and paracrine factors, growth factors, and signaling molecules contributes to the regulation of spermatogenesis. A cell-tocell communication within the testes of these factors is a fundamental requirement of normal spermatogenesis. A noteworthy development has been made recently on discovering the effects of different somatic cells including Leydig, Sertoli, and peritubular myoid cells on manipulation the fate of spermatogonial stem cells. In this review, we discuss the self-renewal, differentiation, and apoptotic roles of somatic cells and the relationship between somatic and germ cells during normal spermatogenesis. We also summarize the roles of different growth factors, their paracrine/endocrine/autocrine pathways, and the different cytokines associated with spermatogenesis. Furthermore, we highlight important matters for further studies on the regulation of spermatogenesis. This review presents an insight into the mechanism of spermatogenesis, and helpful in developing better understanding of the functions of somatic cells, particularly in stallions and would offer new research goals for developing curative techniques to address infertility/subfertility in stallions.

Factors Affecting In-Vitro Maturation in Porcine Oocytes (돼지난자의 체외성숙에 영향을 미치는 요인)

  • 박춘근
    • Journal of Embryo Transfer
    • /
    • v.11 no.2
    • /
    • pp.179-191
    • /
    • 1996
  • In-vitro culture has provided new inforrnation on mechanisms of oocytes rnaturation and results obtained in vitro have led to new questions. In porcine, follicular and oocyte size have the crucial importance for the oocytes maturation. The addition of hormones to the culture medium was found to accelerate and facilitate meiotic maturation. The presence of some factors in serum trigger the resumption of meiosis and support the maturation of oocytes in vitro. The maturation rate of porcine oocytes was also increased by supplementation of porcine follicular fluid to the culture medium. The growth factors can stimulate nuclear maturation and enhances cytoplasnic maturation of oocytes by interaction with gonadotropins. The maturation-promoting factor brings about GVBD and the subsequent maturational events in oocytes. However, cAMP can block the spontaneous meiotic maturation of oocytes in culture. The understanding of these influences is a prerequisite to enhancing in vitro maturation of porcine oocytes.

  • PDF

Morphological Alterations of Flower Induced by Chilling Stress in Rices

  • Hwang, Cheol Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.171-175
    • /
    • 1999
  • Morphological alteration of floral organ development in rice affected by chilling stress was examined. Three varieties of rice were grown under natural conditions and subjected to 12$^{\circ}C$ for 3 or 6 days starting from the ineffective tillering stage, before heading stage and returned to natural condition. Headings were delayed by a 6 day chilling treatment. After heading the panicles were collected and examined for any possible alteration in floral organ development. It appears that there were some differences in sensitivity to chilling stress and degree of injury depending on treatment stages and variety. Chuchungbyeo was the most frequent in producing abnormal flowers among the three varieties examined. Meiosis stage was shown to be the most vulnerable to chilling stress in both Chuchungbyeo and Ilpumbyeo and young panicle differentiation stage was the frequent stage to alter flower development in response to chilling stress only in Chuchungbyeo. It was confirmed that abnormalities occurred in pollen due to chilling stress is a major factor leading to low yield, but to some extent the alterations in carpel development may playa certain role in determining a total yield in response to chilling stress at the reproduction stage in rice. There were abnormalities like extra stigmata, extra lemma, double ovary as well as abnormal anther formation in response to chilling stress. Further studies of the phenocopy observed in rice floral development may be useful for an understanding of the resistance against chilling injury during reproductive stages in rice.

  • PDF

Molecular Genetics of Emericella nidulans Sexual Development

  • Han, Kap-Hoon
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.171-182
    • /
    • 2009
  • Many aspergilli that belongs to ascomycetes have sexuality. In a homothallic or self-fertile fungus, a number of fruiting bodies or cleistothecia are formed in a thallus grown from a single haploid conidia or ascospores. Genome-sequencing project revealed that two mating genes (MAT) encoding the regulatory proteins that are necessary for controlling partner recognition in heterothallic fungi were conserved in most aspergilli. The MAT gene products in some self-fertile species were not required for recognition of mating partner at pheromone-signaling stage but required at later stages of sexual development. Various environmental factors such as nutritional status, culture conditions and several stresses, influence the decision or progression of sexual reproduction. A large number of genes are expected to be involved in sexual development of Emericella nidulans (anamorph: Aspergillus nidulans), a genetic and biological model organism in aspergilli. The sexual development process can be grouped into several development stages, including the decision of sexual reproductive cycle, mating process, growth of fruiting body, karyogamy followed by meiosis, and sporulation process. Complicated regulatory networks, such as signal transduction pathways and gene expression controls, may work in each stage and stage-to-stage linkages. In this review, the components joining in the regulatory pathways of sexual development, although they constitute only a small part of the whole regulatory networks, are briefly mentioned. Some of them control sexual development positively and some do negatively. Regarding the difficulties for studying sexual differentiation compare to asexual one, recent progresses in molecular genetics of E. nidulans enlarge the boundaries of understanding sexual development in the non-fertile species as well as in fertile fungi.

YY1 and CP2c in Unidirectional Spermatogenesis and Stemness

  • Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho;Kim, Chul Geun
    • Development and Reproduction
    • /
    • v.24 no.4
    • /
    • pp.249-261
    • /
    • 2020
  • Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.

Identification of genes involved in inbreeding depression of reproduction in Langshan chickens

  • Xue, Qian;Li, Guohui;Cao, Yuxia;Yin, Jianmei;Zhu, Yunfen;Zhang, Huiyong;Zhou, Chenghao;Shen, Haiyu;Dou, Xinhong;Su, Yijun;Wang, Kehua;Zou, Jianmin;Han, Wei
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.975-984
    • /
    • 2021
  • Objective: Inbreeding depression of reproduction is a major concern in the conservation of native chicken genetic resources. Here, based on the successful development of strongly inbred (Sinb) and weakly inbred (Winb) Langshan chickens, we aimed to evaluate inbreeding effects on reproductive traits and identify candidate genes involved in inbreeding depression of reproduction in Langshan chickens. Methods: A two-sample t-test was performed to estimate the differences in phenotypic values of reproductive traits between Sinb and Winb chicken groups. Three healthy chickens with reproductive trait values around the group mean values were selected from each of the groups. Differences in ovarian and hypothalamus transcriptomes between the two groups of chickens were analyzed by RNA sequencing (RNA-Seq). Results: The Sinb chicken group showed an obvious inbreeding depression in reproduction, especially for traits of age at the first egg and egg number at 300 days (p<0.01). Furthermore, 68 and 618 differentially expressed genes (DEGs) were obtained in the hypothalamus and ovary between the two chicken groups, respectively. In the hypothalamus, DEGs were mainly enriched in the pathways related to vitamin metabolism, signal transduction and development of the reproductive system, such as the riboflavin metabolism, Wnt signaling pathway, extracellular matrix-receptor interaction and focal adhesion pathways, including stimulated by retinoic acid 6, serpin family F member 1, secreted frizzled related protein 2, Wnt family member 6, and frizzled class receptor 4 genes. In the ovary, DEGs were significantly enriched in pathways associated with basic metabolism, including amino acid metabolism, oxidative phosphorylation, and glycosaminoglycan degradation. A series of key DEGs involved in folate biosynthesis (gamma-glutamyl hydrolase, guanosine triphosphate cyclohydrolase 1), oocyte meiosis and ovarian function (cytoplasmic polyadenylation element binding protein 1, structural maintenance of chromosomes 1B, and speedy/RINGO cell cycle regulator family member A), spermatogenesis and male fertility (prostaglandin D2 synthase 21 kDa), Mov10 RISC complex RNA helicase like 1, and deuterosome assembly protein 1) were identified, and these may play important roles in inbreeding depression in reproduction. Conclusion: The results improve our understanding of the regulatory mechanisms underlying inbreeding depression in chicken reproduction and provide a theoretical basis for the conservation of species resources.

Sexual Reproduction in Unicellular Green Alga Chlamydomonas (수염녹두말속(Chlamydomonas) 단세포 녹조의 유성생식)

  • Lee, Kyu Bae
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.100-121
    • /
    • 2017
  • The sexual reproduction of the unicellular green alga Chlamydomonas is reviewed for a comprehensive understanding of the complex processes. The sexual life cycle of C. reinhardtii is distinguished into five main stages: gametogenesis, gamete activation, cell fusion, zygote maturation, and meiosis and germination. Gametogenesis is induced by nitrogen starvation in the environment. C. reinhardtii has two mating types: mating type plus ($mt^+$) and mating type minus ($mt^-$), controlled by a single complex mating type locus ($MT^+$ or $MT^-$) on linkage group VI. In the early gametogenesis agglutinins are synthesized. The $mt^+$ and $mt^-$ agglutinins are encoded by the autosomal genes SAG1 (Sexual AGglutination1) and SAD1 (Sexual ADhesion1), respectively. The agglutinins are responsible for the flagellar adhesion of the two mating type of gametes. The flagellar adhesion initiates a cAMP mediated signal transduction pathways and activates the flagellar tips. In response to the cAMP signal, mating structures between two flagella are activated. The $mt^+$ and $mt^-$ gamete-specific fusion proteins, Fus1 and Hap2/Gcs1, are present on the plasma membrane of the two mating structures. Contact of the two mating structures leads to develop a fertilization tubule forming a cytoplasmic bridge between the two gametes. Upon fusion of nuclei and chloroplasts of $mt^+$ and $mt^-$ cells, the zygotes become zygospores. It is notable that the young zygote shows uniparental inheritance of chloroplast DNA from the $mt^+$ parent and mitochondrial DNA from the $mt^-$ parent. Under the favorable conditions, the zygospores divide meiotically and germinate and then new haploid progenies, vegetative cells, are released.