• Title/Summary/Keyword: underground utility tunnels

Search Result 43, Processing Time 0.026 seconds

Development of optimal cross-section design methods for bored utility tunnels: case study of overseas typical cross-sections and design criteria (터널식 공동구 최적단면 설계기술 개발: 해외 표준단면 사례 및 설계기준 분석)

  • Park, Kwang-Joon;Yun, Kyoung-Yeol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1073-1090
    • /
    • 2018
  • Since the domestic utility tunnels were built mainly in the development project of the new city, they are all in the form of cut-and-cover box tunnel. But, in the case of overseas construction of utility tunnels for existing urban areas, the bored tunnel types are mainly adopted. It is reasonable to install bored tunnels in a downtown area because it is difficult to block the roads or install bypass roads due to heavy traffic and civil complaints. In order to activate the utility tunnels in bored type, it is necessary to secure optimized cross-sectional design technology considering the optimal supplying capacity and mutual influencing factors (Thermal Interference, electrolytic corrosion, efficiency of the maintenance, etc.) of utilities (power cables, telecommunication cables, water pipes, etc.). The optimal cross-section design method for bored utility tunnels is ultimately to derive the optimal arrangement technique for the utilities. In order to develop the design methods, firstly, the cases of tunnel cross-section (Shield TBM, Conventional Tunneling) in overseas shall be investigated to analyze the characteristics of the installation of utilities in the section and installation of auxiliary facilities, It is necessary to sort out and analyze the criteria related to the inner cross-section design (arrangement) presented in the standards and guidelines.

Study on Seismic Evaluation of Racking Response of Underground Utility Tunnels with a Rectangular Cross Section in Korea (국내 박스형 공동구의 횡방향 지진 변위응답 평가에 대한 고찰)

  • Kim, Dae-Hwan;Lim, Youngwoo;Chung, Yon Ha ;Lee, Hyerin
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.29-43
    • /
    • 2022
  • Various underground facilities are being constructed to improve the urban environment. Therefore, it is more necessary than ever to reasonably evaluate the seismic response of underground utility tunnels, playing a significant part in urban infrastructure. In this study, the major features and differences of two types of existing pseudo-static analysis methods are reviewed. Each method uses a simplified 2D frame model to represent the seismic behavior of underground structures. Applying each method to a one-barrel rectangular utility tunnel in Korea, the suitability in predicting seismic responses, especially the racking deformation of the tunnel, is examined. In addition, several precautions and suggestions are provided in this study against the inattentive application of the methods to seismic evaluation of underground structures.

Hazard-Consistent Ground Displacement Estimation for Seismic Input of Underground Utility Tunnels in Korea (국내 재해도에 상응하는 공동구의 지반변위 산정)

  • Kim, Dae-Hwan;Lim, Youngwoo;Chung, Yon-Ha;Lee, Hyerin
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.7-23
    • /
    • 2021
  • Underground utility tunnels, which contribute to supply of electricity, communication, water and heat, are critical lifelines of an urban area. In case service is discontinued or functional disruption happens, there will be a huge socio-economic impact. For the improved seismic design and evaluation of underground structures, this study proposes a ground displacement measure when the site is subjected to a scenario earthquake based on hazard-consistent source spectra and site amplification/attenuation. This measure provides a rational estimation of ground displacement and can be an alternative to existing response displacement methods.

Developments of performance-based evaluation criteria of utility tunnel (성능중심의 공동구 평가 기준 개발)

  • Byun, Yo-Seph;Seong, Joo-Hyun;Cho, Gey-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.715-724
    • /
    • 2022
  • With the enforcement of the infrastructure management act, the importance of utility tunnels that jointly accommodate life-lines such as electricity, communication, water supply, and heating facilities has increased. The currently applied utility tunnel maintenance system is managed in an accident-preventive safety-based evaluation method. However, this evaluation method has limitations in effective maintenance. In this study, performance evaluation items were derived through the Delphi method to suggest a criterion for quantitatively evaluating the performance of utility tunnels, and the weights for each item were calculated through the Analytic Hierarchy Process (AHP) method. In the future, it is judged that a more reasonable performance evaluation standard of utility tunnel can be prepared if modifications and supplements are made through field application.

The numerical study on the ground settlement behavior of box type tunnel enlargement (2차원 수치해석을 통한 초저심도 박스형 터널 편측확폭시 지반침하거동 특성 분석)

  • Cha, Yohan;Cho, Gye-Chun;Hong, Eun-soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.83-94
    • /
    • 2016
  • Utility tunnels have been employed in Korea since the 1970s and start to make trouble with structural safety and serviceability. Recently, tunnel enlargement has consequently been proposed due to the impending problems. However there are little study on box type utility tunnels except traffic tunnels. A 2D finite element analysis was conducted to evaluate ground behavior which depends on enlargement size and stiffness by one-side enlargement of the utility tunnel. Settlement scale increased with larger enlargement size and less stiff ground conditions. The observed settlement characteristics due to enlargement are similar to that suggested by Clough & Schmidt (1981). The settlement width is more affected by enlargement size than ground condition.

Development of a Deep Learning-based Fire Extinguisher Object Detection Model in Underground Utility Tunnels (딥러닝 기반 지하 공동구 내 소화기 객체 탐지 모델 개발)

  • Sangmi Park;Changhee Hong;Seunghwa Park;Jaewook Lee;Jeongsoo Kim
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.922-929
    • /
    • 2022
  • Purpose: The purpose of this paper is to develop a deep learning model to detect fire extinguishers in images taken from CCTVs in underground utility tunnels. Method: Various fire extinguisher images were collected for detection of fire extinguishers in the running-based underground utility tunnel, and a model applying the One-stage Detector method was developed based on the CNN algorithm. Result: The detection rate of fire extinguishers photographed within 10m through CCTV video in the underground common area is over 96%, showing excellent detection rate. However, it was confirmed that the fire extinguisher object detection rate drops sharply at a distance of 10m or more, in a state where it is difficult to see with the naked eye. Conclusion: This paper develops a model for detecting fire extinguisher objects in underground common areas, and the model shows high performance, and it is judged that it can be used for underground common area digital twin model synchronizing.

Stability analysis of an existing utility tunnel due to the excavation of a divergence tunnel emerging from double-deck tunnel (복층터널의 분기터널 굴착에 따른 지하 공동구의 안정성 분석)

  • Nam, Kyoung-Min;Choi, Min-ki;Kim, Jung-Joo;Jafri, Turab H.;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.231-248
    • /
    • 2017
  • Government plans to construct a double-deck tunnel under a portion of Gyeongbu Expressway that will solve traffic problems and could also be used as a flood storage facility. Divergence tunnels connect the main tunnel to the urban areas and their construction effects on adjacent structures at shallow depth need to be analyzed. This study primarily includes the numerical analysis of construction effects of divergence tunnels on utility tunnels. The utility tunnel was analyzed for three cases of volume loss applied to the divergence tunnel and two cases of the angle between main tunnel and divergence tunnel ($36^{\circ}$ and $45^{\circ}$). The results show that the more the volume loss was applied and the shorter the distance was between utility tunnel and divergence tunnel, the more the utility tunnel was affected in terms of induced displacements, angular displacement and stability. The worst scenario was found out to be the one where the angle between main tunnel and divergence tunnel was $36^{\circ}$ and the distance between divergence tunnel and utility tunnel was 10 m, resulting in the largest displacement and differential settlement at the bottom of the utility tunnel. A relationship between the angular displacement and the distance to diameter ratio was also established.

Study on key safety hazards and risk assessments for small section utility tunnel in urban areas (도심지 소단면 터널식 공동구의 핵심 안전 위험요소 및 위험성 평가 연구)

  • Seong, Joo-Hyun;Jung, Min-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.931-946
    • /
    • 2018
  • In line with the increased usability of utility pipe conduits in urban areas, construction and R&D activities of utility tunnel, incorporated with the shield TBM method, are actively under way. The utility tunnels are installed through underground excavation, and thus are relatively weak in terms of construction safety. However, hazards associated with the utility tunnel construction have not been properly identified, despite the introduction of a policy to the 'Design for Safety' for the purpose of reducing accident rates in the construction industry. Therefore, in this study, following the derivation of hazards associated with utility tunnel, these hazards were then used as the basis to uncover key safety hazards requiring extensive management in a field, which were then used to conduct a risk assessment having applied the matrix method so that the results can be utilized in risk assessment during the stages of utility tunnel planning, design, and construction, while also serving as a data reference.

Development of AI Detection Model based on CCTV Image for Underground Utility Tunnel (지하공동구의 CCTV 영상 기반 AI 연기 감지 모델 개발)

  • Kim, Jeongsoo;Park, Sangmi;Hong, Changhee;Park, Seunghwa;Lee, Jaewook
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.364-373
    • /
    • 2022
  • Purpose: The purpose of this paper is to develope smoke detection using AI model for detecting the initial fire in underground utility tunnels using CCTV Method: To improve detection performance of smoke which is high irregular, a deep learning model for fire detection was trained to optimize smoke detection. Also, several approaches such as dataset cleansing and gradient exploding release were applied to enhance model, and compared with results of those. Result: Results show the proposed approaches can improve the model performance, and the final model has good prediction capability according to several indexes such as mAP. However, the final model has low false negative but high false positive capacities. Conclusion: The present model can apply to smoke detection in underground utility tunnel, fixing the defect by linking between the model and the utility tunnel control system.

Analysis of underground post-tensioned precast concrete box utility tunnel under normal fault displacement

  • Wu, Xiangguo;Nie, Chenhang;Qiu, Faqiang;Zhang, Xuesen;Hong, Li;Lee, Jong-Sub;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.69-79
    • /
    • 2022
  • For long underground box utility tunnels, post-tensioned precast concrete is often used. Between precast tunnel segments, sealed waterproof flexible joints are often specified. Fault displacement can lead to excessive deformation of the joints, which can lead to reduction in waterproofing due to diminished contact pressure between the sealant strip and the tunnel segment. This paper authenticates utilization of a finite element model for a prefabricated tunnel fault-crossing founded on ABAQUS software. In addition, material parameter selection, contact setting and boundary condition are reviewed. Analyzed under normal fault action are: the influence of fault displacement; buried depth; soil friction coefficient, and angle of crossing at the fault plane. In addition, distribution characteristics of the utility tunnel structure for vertical and longitudinal/horizontal relative displacement at segmented interface for the top and bottom slab are analyzed. It is found that the effect of increase in fault displacement on the splice joint deformation is significant, whereas the effects of changes in burial depth, pipe-soil friction coefficient and fault-crossing angle on the overall tunnel and joint deformations were not so significant.