• Title/Summary/Keyword: underground power utility

Search Result 33, Processing Time 0.023 seconds

Implementation of condition monitoring system in underground utility tunnels using inductive coupler (유도성 커플러를 이용한 지하공동구의 상태감시시스템)

  • Ju, Woo-Jin;Kim, Hyun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1597-1603
    • /
    • 2017
  • The incidence of fire in underground utility tunnel is lower than other fires, but the damage caused by fire can cause social loss due to social management paralysis as well as economic loss. Hereupon, this paper presents the results of an empirical test on the construction of the underground utility tunnel condition monitoring system using the leakage coaxial cable installed in the underground utility tunnel. For this reason, a verification test was conducted by connecting a inductive coupler 200 Mbps power line communication modem with insertion loss characteristics of $-6{\pm}2dB$ to the installed the leakage coaxial cable installed in the underground utility tunnel. As a result, We confirmed sending/receiving of IP cameras up to 500 m. Therefore, it is judged that it is possible to construct a condition monitoring system for underground utility tunnel by using the leakage coaxial cables installed in the underground utility tunnels without installing additional communication lines for data transmission.

The Measurement of Electromagnetic Wave in Power Cable Tunnel of Underground Utility Tunnel (전력구 내 전자기파에 대한 작업 환경 측정)

  • Kang, Dae Kon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Electromagnetic measurements of the power cable tunnel were conducted from August 10 to 20, 2018, in the ${\bigcirc}{\bigcirc}$ city underground utility tunnel. During this period, the average temperature was $31.89^{\circ}C$ and the humidity was 67.56% in power cable tunnel. As a result of the electromagnetic measurement, the highest electric field was 25.3 V/m and the magnetic flux density was $42.6{\mu}T$. The average electric field was 18.56 V/m and the magnetic flux density was $29.32{\mu}T$ in the power cable tunnel. As a result of comparison with the electric equipment technical standard, the electric field in the power cable tunnel was 0.5% of the electric equipment standard and 35.2% of the magnetic flux density. It's similar value that electric field is about robotic vacuum(15.53 V/m), and magnetic flux density is similar value about capsule- type coffee machine ($23.07{\mu}T$). The number of cable lines and the size of the electromagnetic waves were not proportional to each other through comparison of cable lines in the power cable tunnel. It was confirmed that 154 kV, rather than 22.9 kV, could have a greater influence on occupational.

A Study on the Utilization of Waste Foundry Sand as Backfill Material for Underground Electric Utility Systems (방식사의 지하 전력시설용 되메움재 활용에 관한 연구)

  • 이대수;홍성연;김경열
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.665-672
    • /
    • 2002
  • In this paper, the utilization of waste foundry sand produced in the molding process is studied as a backfill material for underground electric utility systems such as concrete box structures and pipe lines for power supply. The physical, chemical and thermal properties for waste foundry sand are investigated for mechanical stability, environmental hazard and power transmission capacity. Also its properties are compared with the natural river sand. The test results show that waste foundry sand can be utilized for underground concrete box structures as a backfill material; however, it can not be applied to underground pipe lines due to high thermal resistivity or low power transmission capacity.

  • PDF

A new geophysical exploration method based on electrical resistivity to detect underground utility lines and geological anomalies: Theory and field demonstrations

  • Jo, Seon-Ah;Kim, Kyoung-Yul;Ryu, Hee-Hwan
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.527-534
    • /
    • 2019
  • Although ground investigation had carried out prior to the construction, many problems have arisen during the civil-engineering works because of the presence of the unexpected underground utility lines or anomalies. In this study, a new geophysical exploration method was developed to solve those problems by improving and supplementing the existing methods. This new method was based on the difference of electrical resistance values between anomalies and surrounding ground medium. A theoretical expression was suggested to define the characteristics of the anomalies such as location, size and direction, by applying the electric field analysis. An inverse analysis algorithm was also developed to solve the theoretical expression using the measured electrical resistance values which were generated by the voltage flowing the subsurface medium. To verify the developed method, field applications were conducted at the sites under construction or planned. From the results of the field tests, it was found that not only the new method was more predictive than the existing methods, but its results were good agreed with the measured ones. Therefore, it is expected that application of the new exploration method reduces the unexpected accidents caused by the underground uncertainties during the underground construction works.

Experiments on the Behavior of Underground Utility Cable in Fire (지하구 케이블의 연소특성 실험)

  • 박승민;김운형;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2002
  • In this paper, some experiments of a heat release rate and toxicity for underground utility 22.9kv cable in fire was conducted and analysed applying plume equation and smoke chamber test separately, A 22.9 ㎸ power cable is selected for testing heat release in ISO 9705 geometry and toxicity production is measured with NES 713 (British-Naval Engineering Standard)test. In test results, Cable heat release reached about 60 ㎾ above 1.2 m from heptane pan and CO generated lethal concentration under 30 min. exposure condition.

The Utilization of Waste Foundry Sand as Backfill Material for Underground Electric Utility Systems (방식사의 지중 전력설비 되메움재로의 활용성 평가)

  • 이대수;홍성연;김경열;상현규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.201-207
    • /
    • 2003
  • In this paper, the utilization of waste foundry sand produced in the molding process is studied as a backfill material for underground electric utility systems such as concrete box structures and pipe lines for power supply. The physical, chemical and thermal properties for waste foundry sand are investigated far mechanical stability, environmental hazard and power transmission capacity Also its properties are compared with those of the natural river sand. The test results show that waste foundry sand can be utilized for underground concrete box structures as a backfill material; however, it can not be applied to underground pipe lines due to high thermal resistivity or low power transmission capacity.

SUSTAINABILITY SOLUTIONS USING TRENCHLESS TECHNOLOGIES IN URBAN UNDERGROUND INFRASTRUCTURE DEVELOPMENT

  • Dae-Hyun (Dan) Koo;Samuel Ariaratnam
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.367-374
    • /
    • 2013
  • Underground infrastructure systems provide essential public services and goods through buried structures including water and sewer, gas and petroleum, power and communication pipelines. The majority of existing underground infrastructure systems was installed in green field areas prior to development of complex urban built environments. Currently, there is a global trend to escalate major demand for underground infrastructure system renewal and new installation while minimizing disruption and maintaining functions of existing superstructures. Therefore, Engineers and utility owners are rigorously seeking technologies that minimize environmental, social, and economic impact during the renewal and installation process. Trenchless technologies have proven to be socially less disruptive, more environmentally friendly, energy conservative and economically viable alternative methods. All of those benefits are adequate to enhance overall sustainability. This paper describes effective sustainable solutions using trenchless technologies. Sustainability is assessed by a comparison between conventional open cut and trenchless technology methods. Sustainability analysis is based on a broad perspective combining the three main aspects of sustainability: economic; environmental; and social. Economic includes construction cost, benefit, and social cost analysis. Environmental includes emission estimation and environmental quality impact study. Social includes various social impacts on an urban area. This paper summarizes sustainable trenchless technology solutions and presents a sustainable construction method selection process in a proposed framework to be used in urban underground infrastructure capital improvement projects.

  • PDF

Reduction Methods of Sheath Circulating Current in Underground Cable (지중 송전선로에서 시스 순환전류 저감 방안)

  • Ha, C.W.;Kim, J.N.;Lee, S.K.;Kim, D.W.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.175-177
    • /
    • 2002
  • The use of underground transmission cables has increased continuously in densely inhabited urban and suburban for power transmission. Two or more transmission lines are outgoing from one substation in many cases, and one line comprises twin circuits. In order to meet the increasing do and for electric power, underground tables of two or fore circuits are installed in ducts in parallel for several kilometer in the same route. It, however, has not been known generally that the sheath circulating current is generated in a system where a large number of cables are laid on the same route. Therefore, this paper describes an improved analysis method for sheath circulating current on underground transmission cables using EMTP. Author propose several methods to reduce sheath circulating current. The analysing method and reduction methods for two or more underground cables will be really improved for cable system utility.

  • PDF

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

A Study on the Application of 22kV class Superconducting Cable in Utility Network (전력회사 계통에 22kV급 초전도 케이블 도입을 위한 적용 개소 고찰)

  • 김종율;윤재영;이승렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.20-29
    • /
    • 2003
  • As power systems grow more complex and power demands increase, the need of underground transmission system is increasing gradually. But it is very difficult and high in cost to construct new ducts and/or tunnels for power cables in metropolitan areas. HTS (High Temperature Superconducting) cable can carry very high current densities with strongly reduced conductor loss and allow high power transmission at reduced voltage. Therefore HTS cable can transfer more power to be moved in existing ducts, which means very large economical and environmental benefits. A development project for a 22kV class HTS cable is ongoing at a research centers, and the cable manufacturer in Korea. In this paper, we carried out investigation for application of 22kV class HTS cable in Korean utility networks. The results show that the HTS cable is applicable to replace IPB in pumping-up power plant, withdrawal line in distributed generation, withdrawal line in complex power plant, and conventional under ground cable. Finally, as the cost of HTS wire and refrigeration drops, the technical and economical potential of HTS cable is evaluated positively.