• Title/Summary/Keyword: underground mine

Search Result 268, Processing Time 0.023 seconds

Analysis of Received Signal Strength Index from Bluetooth Beacons to Develop Proximity Warning Systems for Underground Mines (지하광산용 근접경고시스템 개발을 위한 블루투스 비콘 신호의 수신 강도 분석)

  • Baek, Jieun;Suh, Jangwon;Choi, Yosoon
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.604-613
    • /
    • 2018
  • In this study, we analyzed the variations in the received signal strength index (RSSI) measured from Bluetooth beacons based on the strength and propagation direction of Bluetooth low energy (BLE) signal. Using a smartphone, we performed field experiments to investigate RSSI variations in the BLE signal transmitted by non-directional and directional beacons in an amethyst mine. In case of non-directional beacons, as the distance between the Bluetooth beacon and smartphone decreased, the RSSI increases, whereas as the BLE signal strength increased, the RSSI average gradually increased. The mean value of RSSI measured from the directional beacons was changed without relation to the facing angle between the Bluetooth beacon and smartphone. The results of this study can be used as basic data for developing a Bluetooth beacon-based proximity warning system for underground mines.

Challenges in Selecting an Appropriate Heat Stress Index to Protect Workers in Hot and Humid Underground Mines

  • Roghanchi, Pedram;Kocsis, Karoly C.
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • Background: A detailed evaluation of the underground mine climate requires extensive measurements to be performed coupled to climatic modeling work. This can be labor-intensive and time-consuming, and consequently impractical for daily work comfort assessments. Therefore, a simple indicator like a heat stress index is needed to enable a quick, valid, and acceptable evaluation of underground climatic conditions on a regular basis. This can be explained by the unending quest to develop a "universal index," which has led to the proliferation of many proposed heat stress indices. Methods: The aim of this research study is to discuss the challenges in identifying and selecting an appropriate heat stress index for thermal planning and management purposes in underground mines. A method is proposed coupled to a defined strategy for selecting and recommending heat stress indices to be used in underground metal mines in the United States and worldwide based on a thermal comfort model. Results: The performance of current heat stress indices used in underground mines varies based on the climatic conditions and the level of activities. Therefore, carefully selecting or establishing an appropriate heat stress index is of paramount importance to ensure the safety, health, and increasing productivity of the underground workers. Conclusion: This method presents an important tool to assess and select the most appropriate index for certain climatic conditions to protect the underground workers from heat-related illnesses. Although complex, the method presents results that are easy to interpret and understand than any of the currently available evaluation methods.

A Study on the Correlation between Coal Mining Subsidence and Underground Goaf (페탄광지역의 지반침하발생과 지하 채굴적의 상관관계 연구)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Song, Kyo-Young;Jo, Min-Jeong
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.453-464
    • /
    • 2008
  • This study is to examine a relation between coal mining subsidence occurrence at abandoned underground coal mines and underground goaf with respect to surface geology, subsurface structure, depth and thickness of coal beds and the distribution of drifts. A study is carried out at the site where susceptibility of coal mining subsidence was proven high in a previous study. In that previous study, the susceptibility of coal mining subsidence was spatially analyzed by GIS using digitized geological maps, investigation reports, digitized mining tunnel maps without consideration of subsurface structure and the multi-level arrangement of drifts. Here we analyze geological characteristics around the goaf and the distribution of coal seam based upon digitized geological maps and investigation reports on the study area. And digitized mining tunnel maps are also used to analyze the depth and multi-level arrangement of drifts. The results show that weakened surface rock strength, relatively shallow depth and large thickness of coal seam below the surface are closely related to the coal mining subsidence occurrence. Complicatedly inter-connected drifts, shallow depth of drifts and surface rock fractures are revealed as additional control factors affecting coal mining subsidence. These factors examined in this study as well as original factors should be taken into account for the quantitative estimation of coal mining subsidence occurrence at abandoned underground coal mine.

A Study on Application of Kuz-Ram model to Domestic Open-pit Limestone Mine (국내 석회석 노천광산에 대한 Kuz-Ram 모델의 적용성에 관한 연구)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong;Jin, Yeon-Ho;Jung, Min-Su;Min, Hyung-Dong
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.120-130
    • /
    • 2016
  • Considering the applicability of Kuz-Ram model, which has been used extensively for predicting rock fragmentation size distribution by blasting, to domestic open-pit limestone mine, a total of 21 blasting tests have been executed at an open-pit limestone mine in eastern Gangwon of South Korea. A comparative analysis of field measured value and Kuz-Ram predicted value showed that there are a considerable amount of error in the predicted values regardless of application of various correction parameters for rock factor and uniformity factor; up to 56.45% in mean fragmentation size and 37.52% in uniformity index. Also the problem of applying different correction parameters has been derived even though a similar blasting pattern has been adopted for a same blasting bench. The authors therefore suggest that Kuz-Ram model needs to be modified for a proper application to domestic open-pit limestone mine.

Analysis of Sinkhole Formation over Abandoned Mine using Active-Passive-Active Finite Elements (폐광지역에서의 싱크홀 발생 규명을 위한 Active-Passive-Active 유한요소 기법 연구)

  • Deb Debasis;Shin Hee-Soon;Choi Sung O.
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.411-422
    • /
    • 2004
  • Sinkhole subsidence occurs over abandoned mine workings and can be detrimental to human lives, damage to properties and other surface structures. In this study, simulation of sinkhole development process is performed using special finite element procedure. Especially, creation of mine voids due to roof falls and generation of goaf from broken rocks are simulated using active-passive-active finite elements. An active or solid element can be made passive or void once the tensile failure criterion is satisfied in the specified sinkhole formation zone. Upon completion of sinkhole development process, these passive elements in again be made active to simulate goal region. Several finite element models are analyzed to evaluate the relationships between sinkhole formation with width of gallery. depth of mine, roof condition and bulking factor of roof rocks. This study demonstrates that the concept of passive elements in numerical analysis can be used effectively for analyzing sinkhole formation or roof fall phenomenon in general.

Application of Fuzzy Reasoning Method for Prediction of Subsidence Occurrences in Abandoned Mine Area (폐광산 지역에서의 지반침하예측을 위한 퍼지추론기법 적용 연구)

  • Choi, Sung-O.;Kim, Jae-Dong;Choi, Gwang-Su
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2009
  • Many old domestic mines were excavated with the room and pillar method or the sublevel caving method and they involve the great possibility of surface subsidence, especially in the shallow depth mines. In most of these cases, the mine roadways and openings are very irregular in shape and the information about the local geology is uncertain. Consequently it is not simple to standardize the estimation method for the possibility of subsidence, especially the sinkhole subsidence. In this study, the fuzzy reasoning method has been applied for development of estimating the possibility of subsidence occurrence in abandoned mine area. This method has the advantage in producing the reliable estimation results with a simple performance procedure even when the precise information on the local geology and mining conditions is rare. For the verification of applicability of this method, the developed method has been applied to Kumho mine in Bonghwa, Kyungbook province and the Choong-ju mine in Iryu, Choongbook province where the surface subsidence occurred already.

Evaluation of Groundwater Flow by Gravel-Filling and Temporary Drainage in Groundwater-saturated Limestone Mine Cavities (지하수 포화 석회석 채굴공동에서의 골재 충전 및 임시배수시 발생하는 지하수 유동 평가)

  • Choi, Woo-Seok;Kang, Byung-Chun;Kim, Eun-Sup;Shin, Dong-Choon
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.205-216
    • /
    • 2017
  • Fluctuations in groundwater level are the major cause of ground subsidence in the abandoned limestone mine. In this study, evaluation of groundwater flow under three different cases of natural condition, aggregate-filling, temporary drainage in groundwater-saturated limestone mine cavities was executed by 3-dimensional analysis. In the case of aggregate-filling, although the water level both in the upper ground of mine cavities and an agricultural watershed was elevated, it was lower than the water level fluctuation of an agricultural water use and rainfall and the flow rate was similar to the flow rate of natural condition. In the case of temporary drainage, as the water level in the upper ground of mine cavities and an agricultural watershed decrease rapidly and the flow rate has increased by 25times, so the risk of ground subsidence increased.

Evaluation of Groundwater Flow through Rock Mass around Development Openings of Mine (광산 갱도 주변 암반에서의 지하수 유동 평가)

  • Yoon, Yong-Kyun
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.370-376
    • /
    • 2011
  • To design the drainage system of a mine, it is very important to evaluate the groundwater inflow to the mine workings. In this study, continuous steady state flow through rock mass around mine openings developed in Sungok area of Gagok Mine was analyzed. Saturated only model and Saturated/unsaturated model were used as material models of rock mass. Groundwater quantities flowing into Sungok 160 level which is 1216 m long are computed as 1450 $m^3$/day in case of a saturated model and as 1071 $m^3$/day in case of a saturated/unsaturated model. An effect that hydraulic conductivity has on inflow turned out be greater than precipitation and inflow increased linearly with increase of hydraulic conductivity. It was found that change of hydraulic conductivity ratio and orientation have an impact on the variation of inflow and water table.

Effect of Photographing Light Intensity on Rock Joint Survey in Mine Tunnels using Stereophotogrammetry (입체사진측량기법을 이용한 광산 갱도 내 불연속면 조사에 대한 조도의 영향에 관한 연구)

  • Han, Jeong-Hun;Song, Jae-Joon;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.517-525
    • /
    • 2009
  • Stereophotogrammetry is used to extract spatial information of an interested object by constructing a stereo-image from two or more photos. In this study, the stereophotogrammetry was adopted for a rock joint survey in mine tunnels. The orientations of discontinuities were measured from two mine tunnels with a clinocompass. To evaluate the effect of photographing light level on the stereophotogrammetry analysis, the light intensity was changed within a predefined range for every photograph. Those photographs were analyzed by using a commercial code for stereophotogrammetry - ShapeMetriX 3D, and the results from the analysis were compared with the manual measurement using a clinocompass.

Necessity and Background of the Metal Recycling from Urban Mine Resources (도시광산(都市鑛山)(사용후제품(使用後製品)) 재자원화(再資源化)의 필요성(必要性)과 배경(背景))

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.13-24
    • /
    • 2010
  • To investigate the necessity and background of the metal recycling from urban mine resources, 4 bigger problems such as the limitation of the underground resources, consumption of the metal resources, contamination of environment and metal recycling business were reviewed. Waste management and recycling are the foremost issues facing Korea on its path to sustainable development in the 21st century. Especially, metal recycling from urban mines is the most urgent fact for global environment and resources conservation. In order to build a recycling-oriented society, it is necessary to develop the recycling technology, recycling practices and a recycling-oriented economic system.