• Title/Summary/Keyword: under-water frequency

Search Result 466, Processing Time 0.028 seconds

Reevaluation of Design Frequency of Drought and Water Supply Safety for Agricultural Reservoirs under Changing Climate and Farming Methods in Paddy Field (기상 및 영농방식 변화에 따른 농업용 저수지의 설계한발빈도 및 이수안전도 재평가)

  • Nam, Won-Ho;Kwon, Hyung Joong;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.121-131
    • /
    • 2018
  • Past climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply and demand. Changes on rainfall and hydrologic patterns can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the changing climate and farming methods in paddy field. The purpose of this study is an evaluation method of design frequency of drought and water supply safety for agricultural reservoirs to investigate evidence of climate change occurrences at a local scale. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under changing climate and farming methods in paddy field.

Numerical and Experimental Investigation on Structure-acoustic Coupling Effect in a Reverberant Water Tank (잔향수조의 구조-음향 연성효과에 관한 수치 및 실험적 고찰)

  • Park, Yong;Kim, Kookhyun;Cho, Dae-Seung;Lee, Jong-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Underwater acoustic power should be measured in a free field, but it is not easy to implement. In practice, the measurement could be performed in a reverberant field such as a water-filled steel tank and concrete tank. In this case, the structure and the acoustic field are strongly or weakly coupled according to material properties of the steel and water. So, characteristics of the water tank must be investigated in order to get the accurate underwater acoustic power. In detail, modal frequencies, mode shapes of the structure and frequency response functions of the acoustic field could represent the characteristics of the reverberant water tank. In this paper, the structure-acoustic coupling has been investigated on a reverberant water tank numerically and experimentally. The finite element analysis has been carried out to estimate the structural and acoustical modal parameters under the dry and water-filled conditions, respectively. In order to investigate the structure-acoustic coupling effect, the numerical analysis has been performed according to the structure stiffness change of the water tank. The acoustic frequency response functions were compared with the numerical analysis and acoustic exciting test. From the results, the structural modal frequencies of the water-filled condition have been decreased compared to those of the dry condition in the low frequency range. The acoustic frequency response functions under the coupled boundary conditions showed different patterns from those under the ideal boundary conditions such as the pressure release and rigid boundary condition, respectively.

A Study on the Manufacture of the Water Sensor (물방울 감지 센서의 제작에 관한 연구)

  • Kim, Jin Kook;Lee, Yun Min
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.37-45
    • /
    • 2014
  • This paper is a study of the water sensor using a coaxial cavity resonator. This water sensor uses the resonant frequency variation of the coaxial cavity resonator when there is a water drop of the used coaxial cavity resonator. And we made resonant frequencies by controlling the input voltage of the oscillator which will be mainly resonated in the coaxial cavity resonator. First, we made the coaxial cavity resonator by simulating the resonator structure with the proposed size and we expect the resonant frequency from the simulation and then we decide the VCO from the result. Second, we made the water drop detecting sensor circuit and measured the water sensor. We decided the size of the resonator as inner conductor 5mm, outer conductor 14mm, the height of resonator 9.5mm, and the height of the glass 6mm from the simulated result. The simulated resonant frequencies are 3.09GHz and we made the VCO frequency ranges from 2.56GHz to 3.2GHz. The measured resonant frequency is 2.97GHz and the return loss is under -8. 4 dB at the center frequency. When the water is dropped on the glass of the resonator, the voltage has changed from 690mV to 145mV. It shows the proposed water sensor can detect the water by the resonant frequency variation of the resonator.

Dilemma of a small dam with large basin area under climate change condition

  • Jeong-Hyeok Ma;Chulsang Yoo;Tae-Sup Yun;Dongwhi Jung
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.559-572
    • /
    • 2024
  • Problems of under-sized dams (small dams with large basin area) could get worse under the global warming condition. This study evaluates the possible change of these problems with the Namgang Dam, an under-sized dam in Korea. For this purpose, first, this study simulates the dam inflow data using a rainfall-runoff model, which are then used as input for the reservoir operation. As a result, daily dam storage, dam release, and dam water supply are derived and compared for both past observed period (1973~2022) and future simulated period (2006~2099) based on the global warming scenarios. Summarizing the results are as follows. First, the inflow rate in the future is expected to be increased significantly. The maximum inflow could be twice of that observed in the past. As a result, it is also expected that the frequency of the water level reaching the high level is increasing. Also, the amount and frequency of dam release are to be increased in the future period. More seriously, this increase is expected to be concentrated on rather extreme cases with large dam release volume. Simply, the condition for flood protection in the downstream of the Namgang Dam is becoming worse and worse. Ironically, the severity of water shortage problem is also expected to become much worse. As the most extreme case, the frequency of no water supply was zero in the observed period, but in the future period, it becomes once every five years. Both the maximum consecutive shortage days and the total shortage volume are expected to become more than twice in the future period. To prevent or mitigate this coming problem of an under-sized dam, the only countermeasure at this moment seems to be its redevelopment. Simply a bigger dam with larger dam reservoir can handle this adverse effect more easily.

Research on the Development of High Radio-Frequency Electrode Probe for Under-Water Treatment (수중 치료용 고주파 전극 프로브 개발에 관한 연구)

  • Tea-Ho Yoon;Woo-Cheol Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1337-1344
    • /
    • 2023
  • We aim to find out the effectiveness of performance evaluation to ensure safety of performance through development of high-frequency electrode probes, evaluation test protocol and evaluation simulator that is essential to ensure safety in performance evaluation and reliability evaluation of high-frequency electrode probes for underwater therapy used with high-frequency electrosurgical equipment.

Effect of Ultrasonic Frequency on the Atomization Characteristics of Single Water Droplet in an Acoustic Levitation Field (음향 부양장(acoustic levitation field)에서 초음파 주파수(ultrasonic frequency)에 따른 단일 액적의 미립화 특성)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.126-131
    • /
    • 2013
  • This paper describes the effect of ultrasonic frequency(f) on the atomization and deformation characteristics of single water droplet in an acoustic levitation field. To achieve this, the ultrasonic levitator that can control sound pressure and velocity amplitude by changing frequency was installed, and visualization of single water droplet was conducted with high resolution ICCD and CCD camera. At the same time, atomization and deformation characteristics of single water droplet was studied in terms of normalized droplet diameter($d/d_0$), droplet diameter(d) variation and droplet volume(V) variation under different ultrasonic frequency(f) conditions. It was revealed that increase of ultrasonic frequency reduces the droplet diameter. Therefore, it is able to levitate with low sound pressure level. It also induces the wide oscillation range, large diameter and volume variation of water droplet. In conclusion, the increase of ultrasonic frequency(f) can enhance the atomization performance of single water droplet.

Numerical Investigation of Pressure Fluctuation Reducing in Draft Tube of Francis Turbines

  • Li, WF;Feng, JJ;Wu, H;Lu, JL;Liao, WL;Luo, XQ
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.202-208
    • /
    • 2015
  • For a prototype turbine operating under part load conditions, the turbine output is fluctuating strongly, leading to the power station incapable of connecting to the grid. The field test of the prototype turbine shows that the main reason is the resonance between the draft tube vortex frequency and the generator natural vibration frequency. In order to reduce the fluctuation of power output, different measures including the air admission, water admission and adding flow deflectors in the draft tube are put forward. CFD method is adopted to simulate the three-dimensional unsteady flow in the Francis turbine, to calculate pressure fluctuations in draft tube under three schemes and to compare with the field test result of the prototype turbine. Calculation results show that all the three measures can reduce the pressure pulsation amplitude in the draft tube. The method of water supply and adding flow deflector both can effectively change the frequency and avoid resonance, thus solving the output fluctuation problem. However, the method of air admission could not change the pressure fluctuation frequency.

Performance of water-jet pump under acceleration

  • Wu, Xian-Fang;Li, Ming-Hui;Liu, Hou-Lin;Tan, Ming-Gao;Lu, You-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.794-803
    • /
    • 2021
  • The instantaneous acceleration affects the performance of the water-jet pump obviously. Here, based on the user-defined function, the method to simulate the inner flow in water-jet pumps under acceleration conditions was established. The effects of two different acceleration modes (linear acceleration and exponential acceleration) and three kinds of different acceleration time (0.5s, 1s and 2s) on the performance of the water-jet pump were analyzed. The results show that the thrust and the pressure pulsation under exponential acceleration are lower than that under linear acceleration at the same time; the vapor volume fraction in the impeller under linear acceleration is 27.3% higher than that under exponential acceleration. As the acceleration time increases, the thrust gradually increases and the pressure pulsation amplitude at the impeller inlet and outlet gradually decreases, while the law of pressure pulsation is the opposite at the diffuser outlet. The main frequency of pressure pulsation at the impeller outlet is different under different acceleration time. The research results can provide some reference for the optimal design of water-jet pumps.

A Study on the Sloshing of the Rectangular Tank Partially Filled with Fluid Under Translational Motion (병진운동하는 사각형 유체저장탱크 내부의 슬로싱 특성 연구)

  • 이영신;김현수;이재형;고성호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.591-597
    • /
    • 2003
  • The oscillation of the fluid caused by external motions is called sloshing, which occurs in moving vehicles with contained fluid masses, such as the oil tankers, railroad cars, aircraft and rockets. Natural frequencies of fluid are much lower than that of solid structures, and the deformation caused by the excitation that is less than 1st natural frequency of fluid is very large. For the reason of that, sloshing characteristics under the ekcitation that is less than the 1st natural frequency must be studied prior to the consideration of natural frequencies of fluid. The experimental devices are constructed to simulate the translation motion. The rectangular tanks are made to study the sloshing characteristics under external excitation. The changes of water height are measured using an analogue camcorder and MPEG board, and those are compared to each other through a standard deviation. From the results of experiments, the sloshing is greatly influenced by the length of the rectangular tank than the width of that under the periodic translational motion in the length direction. The rapid amplification of sloshing by resonance is also confirmed experimentally.

Frequency Tuning Characteristics of a THz-wave Parametric Oscillator

  • Li, Zhongyang;Bing, Pibin;Xu, Degang;Yao, Jianquan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • Frequency tuning characteristics of a THz-wave by varying phase-matching angle and pump wavelength in a noncollinear phase-matching THz-wave parametric oscillator (TPO) are analyzed. A novel scheme to realize the tuning of a THz-wave by moving the cavity mirror forwards and backwards is proposed in a noncollinear phase-matching TPO. The parametric gain coefficients of the THz-wave in a $LiNbO_3$ crystal are explored under different working temperatures. The relationship between the poling period of periodically poled $LiNbO_3$ (PPLN) and the THz-wave frequency under the condition of a quasi-phase-matching configuration is deduced. Such analyses have an impact on the experiments of the TPO.