• 제목/요약/키워드: under-determined system

Search Result 1,132, Processing Time 0.037 seconds

On the Mass Transfer Behaviors in Hollcw-Fiber Membrane Modules for $CO_2$ Separation (이산화탄소 분리를 위한 중공사막 모듈에서의 물질전달 거동)

  • 전명석;김영목;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.51-52
    • /
    • 1994
  • High permeability, selectivity and stability are the basic properties also required for membrane gas separations. The $CO_2$ separation by liquid membranes has been developed as a new technique to improve the permeability and selectivity of polymeric membranes. Sirkar et al.(1) have atlempted the hollow-fiber contained liquid membrane technique under four different operational modes, and permeation models have been proposed for all modes. Compared to a conventional liquid membrane, the diffusional resistance decreased by the work of Teramoto et al.(2), who referred to a moving liquid membrane. Recently, Shelekhin and Beckman (3) considered the possibility of combining absorption and membrane separation processes in one integrated system called a membrane absorber. Their analysis could be predicted effectively the performance of flat sheet membrane, however, there are restrictions for considering a flow effect. The gas absorption rate is determined by both an interfacial area and a mass transfer coefficient. It can be easily understood that although the mass transfer coefficients in hollow fiber modules are smaller than in conventional contactors, the substantial increase of the interfacial area can result in a more efficient absorber (4). In order to predict a performance in the general system of hollow-fiber membrane absorber, a gas-liquid mass transfor should be investigated inevitably. The influence of liquid velocity on both a mass transfer and a performance will be described, and then compared with experimental results. A present study is attempted to provide the fundamentals for understanding aspects of promising a hollow-fiber membrane absorber.

  • PDF

TAH(Total Artificial Heart) Virtual Surgery Using Multi-Volume Visualizing Technique (다중 체적 가시 기법을 이용한 완전인공심장의 가상 수술)

  • Lee, D.H.;Kim, J.H.;Kim, N.K.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.587-589
    • /
    • 1997
  • The virtual surgical trial of TAH is very important in some points as follows. The chests of patients who is under heart-disease are various types of undefine form. It is hard to say that there exist the standard shape of TAH and the position to surgern. So, the virtual surgery system is very important in realizing TAH surgery of human. We have implemented virtual surgery system of TAH that supporting multi volume fitting trial. We have acquired CT images of patients with DICOM format. Each organ of patients was segmented in 2-dimensional CT images. 3-dimensional objects were made with marching cube algorithm and save as file in VRML format. Virtual fitting trial was performed on Cosmo-World; a VRML editor. The collision points of TAH with other organs were well observed. And the best position and angles were determined and saved or each case. We believed that this virtual surgery will be helpful in TAH surgery and TAH customizing.

  • PDF

Active Control of Clamped Beams using Acceleration Feedback Controllers (가속도 되먹임 제어기를 이용한 양단지지보의 능동 제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Jeong, Sang-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1190-1199
    • /
    • 2010
  • This paper reports active control of clamped beams using acceleration feedback controllers (AF). The equations of motion of clamped beam under force and moment pairs were derived and the equations of AF controllers were formulated. The effect of the parameters - gain and damping ratio - of the AF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the AF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies. The increase of the damping ratio of the AF controller leads to decrease the magnitude of the open loop transfer function and modifies its phase characteristics to be more stable. Three AF controllers connected in parallel were then proposed. Each AF controller is tuned at the 2nd, 3rd and 4th modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the 3 modes can be obtained.

Optimal Design of Magnetorheological Mount for Ship Engines : Maximum Damping Force (선박용 엔진 MR 마운트의 최적설계: 최대 댐핑력)

  • Park, Joon Hee;Phu, Do Xuan;Hung, Nguyen Quoc;Kang, Ok Hyun;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.273-278
    • /
    • 2013
  • This paper presents optimal design procedures of mount based on a magnetorheological (MR) fluid to isolate the vibration in heavy diesel engine system. At first, frequency response and force-displacement transmissibility methods are used to get required damping force that is necessary for effective vibration isolation. From this result, a new type of high damping force engine mount is proposed and the governing equation of Bingham plastic behavior of MR fluid in flow path is mathematically derived under cylindrical coordinates. Finally, parametric design optimization featuring finite element is performed using ANSYS software to get the required damping force in MR mount system which can be used to reduce engine vibration. Damping force of the MR mount is then determined as an objective function in this analysis based on ANSYS. Furthermore, Magnetic analysis is then applied in this process.

  • PDF

Optimal Design of Magnetorheological Mount for Ship Engines : Maximum Damping Force (선박용 엔진 MR 마운트의 최적설계: 최대 댐핑력)

  • Park, Joon Hee;Do, Xuan Phu;Nguyen, Quoc Hung;Kang, Ok Hyun;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.472-478
    • /
    • 2013
  • This paper presents optimal design procedures of mount based on a magnetorheological(MR) fluid to isolate the vibration in heavy diesel engine system. At first, frequency response and force-displacement transmissibility methods are used to get required damping force that is necessary for effective vibration isolation. From this result, a new type of high damping force engine mount is proposed and the governing equation of Bingham plastic behavior of MR fluid in flow path is mathematically derived under cylindrical coordinates. Finally, parametric design optimization featuring finite element is performed using ANSYS software to get the required damping force in MR mount system which can be used to reduce engine vibration. Damping force of the MR mount is then determined as an objective function in this analysis based on ANSYS. Furthermore, Magnetic analysis is then applied in this process.

Model updating using the feedback exciter : The decision of sensor location & feedback gain (궤환 제어를 이용한 모델 개선법 : 측정 센서 위치와 궤환 이득값 설정)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.802-807
    • /
    • 2002
  • The updating of FE model to match it with the experimental results needs the modal information. There are two cases where this methodology is ill-equip to deal with; under-determined and ill-conditioning problem. The feedback exciter that uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains can deal with these problems as the new modal data from the closed loop system generate more constraints the updating parameters should obey. The new modal data from the closed loop system should be different to enhance the condition of the modal sensitivity matrix. In this research, a guide for the selection of the sensor locations and the decision of the corresponding output feedback gains is proposed. This method is based on the sensitivity of the modal data with respect to the feedback gains. Through the proper selection of the exciter and sensor locations and the feedback gain, the eigenvalue sensitivity of the updating parameters which cause the ill-conditioning of the modal sensitivity matrix can be modified and consequently the error contamination in updating parameters are reduced.

  • PDF

Sliding Mode Controller Design for Biped Robot (이족보행로봇을 위한 슬라이딩 제어기 설계)

  • Park, In-Gyu;Kim, Jin-Geol;Kim, Ki-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.137-146
    • /
    • 2001
  • A robust controller with the sliding mode is proposed for stable dynamic walking of the biped robot in this paper. For the robot system to be controlled, which is modeled as 14 DOF rigid bodies by the method of multi-body dynamics, the joint angle trajectories are determined by the velocity transformation matrix. Also Hertz force model and Hysteresis damping element are utilized for the ground reaction and impact forces during the contact with the ground. The biped robot system becomes unstable since those forces contain highly confused noise components and some discontinuity, and modeling uncertainties such as parameter inaccuracies. The sliding mode control is applied to solve above problems. Under the assumption of the bounded estimation errors on the unknown parameters, the proposed controller provides a successful way to achieve the stability and good performance in spite of the presence of modeling imprecisions of uncertainties.

  • PDF

Determination of Optimal sizes of Battery Energy Storage System Considering Rate-Of-Return for Customers-side (수익률을 고려한 수용가측 전자전력저장시스템의 최적용량 선정)

  • Hong, Jong-Seok;Kim, Jae-Chul;Choi, Joon-Ho;Son, Hak-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.146-148
    • /
    • 2001
  • This paper discusses the optimal sizes of BESS. The goal must be optimized electricity charge of the customers-side with choosing the time-of-use rates. Therefore the cost is minimized by BESS installed the customers-side. Feasible ROR that means the ratio of capital costs to economic effect owned the optimal BESS sizes is determined the suitable domestic condition based on the battery cost and power converter system cost. Payback period times can be presented by BESS through the ROR. Multi-Pass Dynamic Programming(MPDP) algorithm is applied to the customer for the optimal sizes determination in this paper. It is to solve the optimal solution under the constraints. To investigate the efficiencies of the constraints, it is applied the typical load curve to the high-voltage customer owned Time-Of-Use(TOU) whether BESS is installed or not. Well, The result is obtained that feasible BESS sizes can be achieved the suitable customers-side of meter through the ROR.

  • PDF

The Estimation of the Dielectric Strength Decrease of the Solid-solid Interfaces by using the Applied Voltage to Breakdown Time Characteristics

  • Shin, Cheol-Gi;Bae, Duck-Kweon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.278-282
    • /
    • 2007
  • In the complex insulation system that is used in extra high voltage(EHV) devices, according to the trend for electric power equipment of high capacity and reduction of its size, macro interfaces between two different bulk materials which affect the stability of insulation system exist inevitably. In this paper, the dielectric strength decrease of the macro interfaces between epoxy and ethylene propylene diene terpolymer(EPDM) was estimated by using the applied voltage to breakdown time characteristics. Firstly, the AC short time dielectric strength of specimens was measured at room temperature. Then, the breakdown time was measured under the applied constant voltage which is 70% of short time breakdown voltage. With these processes, the life exponent n was determined by inverse power law, and the long time breakdown voltage can be evaluated. The best condition of the interface was LOS(low viscosity(350 cSt) silicone oil spread specimen). When 30 years last on the specimens, the breakdown voltage was estimated 44% of the short time breakdown voltage.

Comparative Performance Study of Various Algorithms Computing the Closest Voltage Collapse Point (최단 전압붕괴 임계점을 계산하는 알고리즘의 특성 비교)

  • Song, Chung-Gi;Nam, Hae-Kon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1078-1082
    • /
    • 1997
  • The distance in load parameter space to the closest voltage collapse point provides the worst case power margin and the left eigenvector identifies the most effective direction to steer the system to maximize voltage stability under contingency. This paper presents the results of the comparative performance study of the algorithms, which are applicable to a large scale power system, for computing the closest saddle node bifurcation (CSNB) point. Dobson's iterative method converges with robustness. However the slow process of updating the load increasing direction makes the algorithm less efficient. The direct method converges very quickly. But it diverges if the initial guess is not very close to CSNB. Zeng's method of estimating the approximate critical point in the pre-determined direction is attractive in the sense that it uses only using load flow equations. However, the method is found to be less efficient than Dobson's iterative method. It may be concluded from the above observation that the direct method with the initial values obtained by carrying out the iterative method twice is most efficient at this time and more efficient algorithms are needed for on-line application.

  • PDF