• Title/Summary/Keyword: under flow water

Search Result 1,373, Processing Time 0.031 seconds

Analysis of Factors Affecting Peak Loading Coefficient of Sewer Works in Korea (우리나라 하수도시설의 첨두부하율 영향요소 분석)

  • Hyun, In-Hwan;Lee, Young-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.877-884
    • /
    • 2011
  • Although peak loading coefficient is one of critical design factors for sewer works, its detailed affecting factors were not analyzed because of limited data availability. This study analyzed the affecting factors on peak loading coefficient with plenty data obtained from several newly constructed sewer works. Simple and multiple regression analysis methods were adopted to analyze the relationships of each variable with or without data filtering. Drainage population, drainage area, population density, and daily sewage flow per person showed very weak relationships under diverse characteristics of cities. However, daily sewage flow per person showed stronger relationships with peak loading when daily sewage flow per person was splitted into two ranges. Population density (i.e., drainage population divided by drainage area) and daily sewage flow per person considerably were related with peak loading coefficient when daily sewage flow per person is less than about 400 Lpcd.

Influences of Gas and Solid Particle on the Cavitation Erosion-Corrosion (케비테이션 침식-부식에 미치는 기체와 고체입자의 영향)

  • Lim, Uh-Joh;Beak, Suk-Jong;Hwang, Jae-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.124-131
    • /
    • 1993
  • Recently. with the rapid development in large sea water systems. there occurs much interest in the study of erosion-corrosion. In this study. the mild steel(SB41) was tested by using of a erosion-corrosion test apparatus with fountain-jet and was investigated under the environments of liquid, air-liquid 2 phase flow and solid particle-liquid 2 phase flow. Main results obtained are as follows : 1. The weight loss by corrosion-erosion in air-liquid 2 phase flow are more increased than that in only liquid solution. 2. Effect of air-liquid 2 phase flow on corrosion-erosion sensitivity becomes more sensitive in natural seawater than that in distilled water. 3. The corrosion potential by corrosion-erosion in air-liquid and solid particle-liquid 2 phase flow becomes noble than that of only liquid solution.

  • PDF

Study on Atomization Characteristics of Shear Coaxial Injectors (전단동축형 분사기들의 미립화 특성에 대한 연구)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Six shear coaxial injectors with different recess length and taper angle were manufactured. Cold-flow tests on the injectors were performed at room temperature and pressure using water and air as simulants. By changing the water mass flow rate and air mass flow rate, spray images were taken under single-injection and bi-injection. Breakup length and spray angle were analyzed from instantaneous and averaged spray images using image processing techniques. For all the injectors, the breakup length generally decreased as the momentum flux ratio increased at the same gas mass flow rate. The injectors with 7.5° taper angle usually had the longest breakup length and the smallest spray angle. When the taper angle was 15° or more, it hardly affected breakup length and spray angle. The recess length did not influence breakup length but its effect on spray angle depended on the taper angle.

Behaviour of Leaking Tunnels under Unconfined Flow Condition (비구속 흐름조건하에 있는 배수형 터널의 거동)

  • Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.43-54
    • /
    • 2005
  • Tunnelling in a water bearing soil may cause draw-down of ground water table. Modelling of this problem requires considering the change of phreatic surface including the stress constitutive relationship for an unsaturated soil. However, it is normally assumed that ground water is confined. Numerical formulation of coupled behavior considering phreatic surface is described and implemented into computer program. Influence of unconfined flow on tunnel and ground is thoroughly investigated and compared with that of confined flow condition. It is identified that ground and lining behaviour below phreatic surface is almost the same as that under confined flow conditions, however, there is considerable difference in ground behaviour above phreatic surface. It is generally concluded that the assumption of confined flow is acceptable in terms of lining design.

Non-Newtonian Flow Mechanism for Thixotropic and Dilatant Flow Units of Sodium bis-(2-ethylhexyl)sulfosuccinate-water Micelles (Sodium bis-(2-ethylhexyl)sulfosuccinate-water 미셀의 틱소트로 피와 다일레턴시 유동단위에 대한 비뉴톤 유동메카니즘)

  • Kim, Nam Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.540-548
    • /
    • 2016
  • The non-Newtonian flow curves of sodium bis-(2-ethylhexyl)sulfosuccinate-water lamellar liquid crystals were obtained in various concentrations and temperatures by using a cone-plate rheometer. By applying non-Newtonian flow equation to the flow curves for AOT-water lamellar liquid crystal samples, the rheological parameters were obtained. Particular attention is given to the hysteresis loop detected when the liquid crystal samples are shear under increasing-decreasing shear stress modes which result in thixotropic and dilatant behavior. Sodium bis-(2-ethylhexyl)sulfosuccinate-water lamellar liquid crystals behave as weak gels when they are subjected to shear flow, but when the applied stress surpasses the yield stress, they exhibit non-linear viscoelasticity. Upon decreasing shear rate, the dispersion still preserves much of its structure and consequently its shear stress remains higher than the values measured in the increasing shear rate mode.

Magnetic and Thermal Analysis of a Water-cooled Permanent Magnet Linear Synchronous Motor

  • Zhang, Xinmin;Lu, Qinfen;Cheng, Chuanying;Ye, Yunyue
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.498-504
    • /
    • 2012
  • The water-cooled Permanent Magnet Linear Synchronous Motor (PMLSM) has a wide range of applications due to high efficiency, high thrust force density and high acceleration. In order to ensure normal operation and maximum output, both the magnetic and thermal performance are vital to be considered. Based on ANSYS software, electromagnetic and thermal finite-element analysis (FEA) models of a 14-pole, 12-slot water-cooled PMLSM are erected adopting suitable assumptions. Firstly, the thrust force and force ripple with different current densities are calculated. Secondly, the influence of different water flow on the motor heat dissipation and force performance under different operationional conditions are investigated and optimized. Furthermore, for continuous operation, the temperature rise and thrust feature are studied under the rated load 8A, the proper temperature $120^{\circ}C$ and the limited temperature $155^{\circ}C$. Likewise, for short-time operation, the maximum duration is calculated when applied with a certain large current. Similarly, for intermittent operation, load time as well as standstill time are determined with the optimal current to achieve better thrust performance.

Experimental Study on Heat Transfer and Pressure Drop of Heat Exchangers for Cooling Fan Coil Unit (냉방용 팬코일 유닛 열교환기의 열전달 및 압력강하 특성 실험연구)

  • Kwon, Young-Chul;Ko, Kuk-Won;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.599-604
    • /
    • 2008
  • An experimental study has been performed to investigate the air-side capacity and pressure drop of the fin-tube heat exchanger for a fan coil unit under a cooling condition. The experimental data of five kinds of slit fin-tube heat exchangers were measured using an air-enthalpy calorimeter and a constant temperature water bath. Cooling capacities at the air and water rating flow rates were larger at the lower inlet water temperature. With increasing the water flow rate, the cooling capacity increased at the constant rate. Under the lower inlet water temperature, since the condensate was generated more on the fin-tube surface, the air-side pressure drop of the heat exchanger was larger.

Estimating Leaching of Nutrients and Pesticides in Agricultural Lands -A Perferential Flow Model- (농경지의 비료, 농약의 지하유실량 추정 -Preferential 흐름모형-)

  • 이남호;타모스틴후이스
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.62-73
    • /
    • 1997
  • The application of nutrients and pesticides to agricultural lands has been reported to contribute to groundwater contamination, which can be explained by preferential flow in lieu of convective-dispersive flow. An one-dimensional numerical model depicting preferential water and solute movement was modified to describe multi-layer flows. The model is based on a piecewise linear conductivity function. By combining conservation of mass and Darcy's law and using the method of characteristics a solution is obtained for water flow in which water moves at distinct velocities in different flow regions instead of an average velocity for the whole profile. The model allows transfer ofqr solutes between pore groups. The transfer is characterized by assuming mixing coefficients. The model was applied to undisturbed soil columns and an experiment site with structured sandy clay loam soil. Chloride, bromide, and 2, 4-D were used as tracers. Simulated solutes concentrations were in good agreement with the soil column data and field data in which preferential flow of solute is significant. The proposed model is capable of describing preferential solute transport under laboratory and field conditions.

  • PDF

HYSTERETIC MODELING ON THE CONVECTIVE TRANSPORT OF ORGANIC SOLVENT IN AN UNSATURATED SOIL ZONE

  • Lee, Kun-Sang
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.241-249
    • /
    • 2006
  • A mathematical model is described for the prediction of convective upward transport of an organic solvent driven by evaporation at the surface, which is known as the major transport mechanism in the in-situ photolysis of a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD). A finite-element model was proposed to incorporate the effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of hysteretic models for more accurate description of k-S-p relations. Extensive numerical calculations were performed to study fluid flow through three types of soils under different water table conditions. Predictions of relative permeability-saturation-pressure (k-S-p) relations and fluids distribution for an illustrative soil indicate that hysteresis effects may be quite substantial. This result emphasizes the need to use hysteretic models in performing flow simulations including reversals of flow paths. Results of additional calculations accounting for hysteresis on the one-dimensional unsaturated soil columns show that gravity affects significantly on the flow of each fluid during gravity drainage, solvent injection, and evaporation, especially for highly permeable soils. The rate and duration of solvent injection also have a profound influence on the fluid saturation profile and the amount of evaporated solvent. Key factors influencing water drainage and solvent evaporation in soils also include hydraulic conductivity and water table configuration.

Ecological flow calculations and evaluation techniques: Past, present, and future

  • LIU Yang;Wang Fang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.28-28
    • /
    • 2023
  • Most countries worldwide are finding it difficult to make decisions regarding the utilization of water resources and the ecological flow protection of rivers because of serious water shortages and global climate warming. To overcome this difficulty, accurate ecological flow processes and protected ecological objectives are required. Since the introduction of the concept, ecological flow calculations have been developed for more than 60 years. This technical development has always been dominated by countries such as the United States, Australia, and the United Kingdom. The technical applications, however, vary substantially worldwide. Some countries, for instance, did not readjust the method because of a lack of understanding of the ecological effect or because they failed to achieve elaborate scheduling. Mostly, readjustments were not made because the users could not make their choices from among numerous methods for ecological flow. This paper presents three research results based on a systematic review of 240 methods with clear connotation boundaries. First, the ecological flow algorithm was developed along with the scientific and technological progress in the river ecosystem theory, ecohydrological relationship, and characterization and simulation of hydrological and hydrodynamic processes. In addition, the basis of the method has evolved from the hydrological process of the ecosystem, hydraulics-habitat conditions, and social development interference to whole ecosystem simulation. Second, 240 methods were classified into 50 sub-categories to evaluate their advantages and disadvantages according to the ecological flow algorithms of hydrology, hydraulics, habitat, and other comprehensive methods. According to this evaluation, 60% of the methods were not suitable for further application, including the method based on the percentage of natural runoff. Furthermore, the applicability of the remaining methods was presented according to the evaluation based on the aspects of allocation of water resources, water conservancy project scheduling, and river ecological evaluation. Third, In the future, most developing countries should strengthen the guarantee of high-standard ecological flow via a coordination mechanism for the ecological flow guarantee established under a sustainable framework or via an ecological protection pattern at the national level according to the national system. Concurrently, a reliable ecological flow demand process should also be established on the basis of detailed investigation and research on the relationship between river habitats, ecological hydrology, and ecological hydraulics. This will ensure that the real-time evaluation of ecological flow forces the water conservancy project scheduling and accurate allocation of water.

  • PDF