• Title/Summary/Keyword: unconfined compression

Search Result 281, Processing Time 0.038 seconds

Strength Characteristics of Geo-polymer Grout (지오폴리머계 그라우트재의 강도 특성)

  • Lee, Jonghwi;Kim, Seonju;Cha, Kyungsub;Kim, Sunkon;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.53-59
    • /
    • 2012
  • In this study, strength and durability of a geo-polymer grout material(HIT) was investigated through unconfined compression strength tests(UCS)), scanning electron microscope(SEM), elution tests, and surface observations. UCS tests showed high initial strength and rapid continuous strength increments when compared to labile wasser glass(LW) and space grouting rocket system (SGR) grout materials, which showed strength reduction after 28 days. The higher strength was also reflected in SEM results which showed calcium silicate hydroxide(C-S-H) gels of the dense hydrate range, indicating higher strength and durability. Additionally, elution tests and grout surface observations showed HIT was in good condition and the decrease in weight was minor when under water for six months. LW and SGR showed the grout surface to be constricted and lower durability due to higher weight increase. These results and observations show HIT to be better suited for coastal structural applications than LW and SGR in long terms of strength and durability.

Development of Rural Road Pavement Technology Using Cement Stabilizer (시멘트계 고화재를 활용한 농어촌도로 포장공법 개발)

  • Oh, Young-In;Kong, Gil-Yong;Kim, Seung-Wook
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.171-184
    • /
    • 2007
  • Chemical admixture stabilization has been extensively used in both shallow and deep stabilization in order to improve inherent properties of the soil such as strength and deformation behavior. An increment in strength, a reduction in compressibility, an improvement of the swelling or squeezing characteristics and increasing the durability of soil are the main aims of the admixtures for soil stabilization. Recently, the various advanced cement stabilizer mixing technique was developed. Advanced cement stabilizer mixing technique is environmentally-friendly and has an excellent mixing property and outstanding mixing speed. In this study, to develop the rural road pavement technology using cement stabilizer, compaction and unconfined compression test were performed with various mixing ratio and two types of soil(clay and silty soil). And the freezing/thaw test and bending strength test performed to develop suitable cement stabilizer material for stabilization of rural road. Based on the test results, the liquid types of cement stabilizer material and silty soil mixture are most suitable for rural road construction and although the mixing ratio is low, cement stabilizer mixture is effective for durability of rural road surface layer.

  • PDF

Experimental Evaluation of Shear Strength of Surface Soil Beneath Greenhouse Varying Compaction Rate (비닐하우스 기초 토양의 다짐률 변화에 따른 전단강도 특성)

  • Lim, Seongyoonc;Heo, Giseok;Kwak, Dongyoup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.17-26
    • /
    • 2021
  • Greenhouses have been damaged due to the uplift pressure from strong wind, for which rebar piles are often installed near the greenhouse to resist the pressure. For the effective design of rebar piles, it is necessary to access the shear strength of soil on which the greenhouse is constructed. This study experimentally evaluates the shear strength of the soil beneath the greenhouse. Four soil samples were collected from four agricultural sites, and prepared for testing with 75, 80, 85, and 90% compaction rates. One-dimensional unconfined compression test (UC), consolidated-undrained triaxial test (CU), and resonant column test (RC) were performed for the evaluation of shear strength and shear modulus. Generally, the higher shear strength and modulus were observed with the higher compaction rates. In particular, the UC shear strength increases with the increase of #200 sieve passing rate. Resulting from the CU test, the sample with the most of coarse soil had the highest friction angle, but the variation is small among samples. Resulting from the CU and RC tests, the ratio of maximum shear modulus with the major principle stress at failure was the higher at the finer soil. The ratio was two to three times greater than the ratio from the standard sand. This indicates that the shear strength is lower for the fine soil than the coarse soil at the same shear modulus. The results of this study will be a useful resource for the estimation of the pull-out strength of the rebar pile against the uplift pressure.

Physical and numerical modelling of the inherent variability of shear strength in soil mechanics

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghoreishi, Malahat;Taleb, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.31-45
    • /
    • 2019
  • In this study the spatial variability of soils is substantiated physically and numerically by using random field theory. Heterogeneous samples are fabricated by combining nine homogeneous soil clusters that are assumed to be elements of an adopted random field. Homogeneous soils are prepared by mixing different percentages of kaolin and bentonite at water contents equivalent to their respective liquid limits. Comprehensive characteristic laboratory tests were carried out before embarking on direct shear experiments to deduce the basic correlations and properties of nine homogeneous soil clusters that serve to reconstitute the heterogeneous samples. The tests consist of Atterberg limits, and Oedometric and unconfined compression tests. The undrained shear strength of nine soil clusters were measured by the unconfined compression test data, and then correlations were made between the water content and the strength and stiffness of soil samples with different consistency limits. The direct shear strength of heterogeneous samples of different stochastic properties was then evaluated by physical and numerical modelling using FISH code programming in finite difference software of $FLAC^{3D}$. The results of the experimental and stochastic numerical analyses were then compared. The deviation of numerical simulations from direct shear load-displacement profiles taken from different sources were discussed, potential sources of error was introduced and elaborated. This study was primarily to explain the mathematical and physical procedures of sample preparation in stochastic soil mechanics. It can be extended to different problems and applications in geotechnical engineering discipline to take in to account the variability of strength and deformation parameters.

A Study on the Characteristics of Alkali Silica Sol Grouting Material (알칼리성 실리카졸 지반주입재의 특성에 관한 연구)

  • Cho, Younghun;Kim, Chanki;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.17-24
    • /
    • 2011
  • For the purpose of cut off and ground stabilization, water glass chemical grouting method using sodium silicate has problems of weakening durability and ground water pollution because leaching was conducted when the homogel is exposed to the ground water as time elapses. The purpose of this study is to identify the effect of alkali silica sol ground injection materials, it was compared with the sodium silicate ground injection materials using water glasses. For sodium silicate and alkali silica sol by mixing each case is divided into four different specimens were made and tested. The characteristic of alkali silica sol ground injection material was analyzed by unconfined compression test and environmental impact statement of ordinary portland cement and blast furnace slag cement. Alkali silica sol specimens were made mixing A-solution and B-solution in the proportion of one on one. Through this study, alkali silica sol ground injection mixing blast furnace slag cement has excellent strength and environment-friendly.

Laboratory Mix Design of C.S.G Method (C.S.G 공법의 실내 배합설계)

  • Kim Ki-Young;Jeon Je-Sung;Kim Yong-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.27-37
    • /
    • 2006
  • Cemented Sand and Gravel (C.S.G) method has become increasingly popular in Japan and throughout the world as a construction method and material. This method is favorably used for cofferdam and large dam because a quarry and aggregate plant facility can be diminished. Also, this method can reduce construction cost, work duration and destruction of environment. In this paper, a methodology for C.S.G mix design based on so-called soil mechanics approach is proposed for trapezoid-shaped dam. The methodology consists of selection of a suitable aggregate, introduction of compaction method, processing to prepare standard specimens, and determination of mix portions. Also, unconfined compressive strength tests and large triaxial compression tests are performed. From the results of the test, correlation equation among strength, elastic modulus and unit cement is proposed.

Experiments Study on Critical Strain Properties of Sedimentary Rocks based on Mohr-Coulomb Strength Criterion (Mohr-Coulomb의 파괴기준을 기본으로한 퇴적암의 한계변형률 특성에 관한 연구)

  • Kim, Young-Su;Lee, Jae-Ho;Jin, Guang-Ril;Shin, Shi-Un;Kwon, Tea-Soon;Han, Hee-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.821-832
    • /
    • 2008
  • The hazard warning levels are necessary for the rational design and safety construction of underground space, as mountain and urban tunnel. Sakurai provided the hazard warning levels for assessing the stability of tunnels using the critical strain of rock mass, which is defined as a ratio between uni-axial compressive strength and the Young's modulus. The concept of critical strain guidelines is introduced in this study for the assessment of tunnel safety during excavation. Moreover, in this paper, the critical strain properties of sedimentary rock in Korea has investigated and analysed in detail by Lab. test, as the uniaxial and triaxial compression tests. Finally, critical strain properties of sedimentary rock on uniaxial and triaxial stress condition is discussed the relationship of failure strain values, uniaxial and triaxial compression strengths, confining pressure and Young's modulus.

  • PDF

Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghorbani, Ali;Alamoti, Mohsen Nasiri
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • The importance of using materials cost effectively to enhance the strength and reduce the cost, and weight of earth fill materials in geotechnical engineering led researchers to seek for modifying the soil properties by adding proper additives. Lightweight fill materials made of soil, binder, water, and Expanded polystyrene (EPS) beads are increasingly being used in geotechnical practices. This paper primarily investigates the behavior of sandy soil, modified by EPS particles. Besides, the mechanical properties of blending sand, EPS and the binder material such as fly ash and cement were examined in different mixing ratios using a number of various laboratory studies including the Modified Standard Proctor (MSP) test, the Unconfined Compressive Strength (UCS) test, the California Bearing Ratio (CBR) test and the Direct Shear test (DST). According to the results, an increase of 0.1% of EPS results in a reduction of the density of the mixture for 10%, as well as making the mixture more ductile rather than brittle. Moreover, the compressive strength, CBR value and shear strength parameters of the mixture decreases by an increase of the EPS beads, a trend on the contrary to the increase of cement and fly ash content.

Stabilized marine and desert sands with deep mixing of cement and sodium bentonite

  • Saberian, Mohammad;Moradi, Mojtaba;Vali, Ramin;Li, Jie
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.553-562
    • /
    • 2018
  • Road construction is becoming increasingly important in marine and desert areas due to population growth and economic development. However, the load carrying capacity of pavement is of gear concern to design and geotechnical engineers because of the poor engineering properties of the soils in these areas. Therefore, stabilization of the soils is regarded as an important issue. Besides, due to the fuels combustion and carbonate decomposition, cement industry generates around 5% of global $CO_2$ emission. Thus, using bentonite as a natural pozzolan in soil stabilization is more eco-friendly than using cement. The aim of this research is to experimentally study of the stabilized marine and desert sands using deep mixing method by ordinary Portland cement and sodium bentonite. Different partial percentages of cement along with different weight percentages of sodium bentonite were added to the sands. Unconfined compression test (UCS), Energy Dispersive X-ray (EDX), and Scanning Electron Microscope (SEM) were conducted on the specimens. Moreover, a mathematical model was developed for predicting the strength of the treated soils.

Experimental Study of Waste Tire Powder-Added Lightweight Soil as Flowable Backfill (유동성 뒷채움재인 폐타이어 혼합경량토에 대한 실험적 연구)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.112-118
    • /
    • 2008
  • The purpose of this study was to determine the engineering and environmental properties of the waste tire powder-added lightweight soil (TLS) used as flowable backfill. The TLS used in this experiment consisted of dredged soil, bottom ash, waste tire powder and cement. Test specimens were prepared with various contents of waste tire powder ranging from 0% to 100% at 25% intervals and water contents ranging from 140% to 200% by the weight of the dry dredged soil. Several series of unconfined compression tests, flow tests, and leaching tests were carried out. Experimental results for the TLS indicated that the unconfined compressive strength, secant modulus (), and unit weight of the TLS decreased with an increase in waste tire powder content. However, as the waste tire powder content increased, the stress-strain relationship of the TLS showed more ductile behavior rather than brittle behavior. The flow value increased with an increase in water content, but decreased with an increase in waste tire powder content. The result of the leaching test showed that the leaching amounts of heavy metals were lower than the permitted limits suggested by the Ministry of Environment.