• Title/Summary/Keyword: unconfined

Search Result 738, Processing Time 0.027 seconds

Verification on the Axial and Flexural Plastic Resistance Analysis of Unconfined Corrugate Steel Sheet and Concrete Composite Section (비구속 파형강판 합성단면의 압축 및 휨 소성해석방법에 관한 분석)

  • Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • For the composite section of corrugated steel sheet and concrete, which is often used in soil structures, a conservative design method based on the ultimate strength state is still applied due to the difficulty of the analysis of compatibility condition. In this study, plastic analysis was performed on the flexural and axial strength of the composite section using two limit state design methods, LRFD and LSD. As a result of the analysis of the experimental results, the LRFD analysis value was interpreted as a conservative results for compressive strength, and it was analyzed that the effect of the concrete compressive strength was greater than the steel ratio of the steel plate. The flexural strength was analyzed to be in good agreement with the experimental results by the LSD analysis. From the parametric analysis on the design variables, the hogging moment, which is affected by the tensile strength of the steel plate, slightly decreased the increasing rate of the strength due to the influence of the bolts connection, but the sagging moment linearly increased according to the increment of steel reinforcement ratio.

Alkaline induced-cation crosslinking biopolymer soil treatment and field implementation for slope surface protection

  • Minhyeong Lee;Ilhan Chang;Seok-Jun Kang;Dong-Hyuk Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.29-40
    • /
    • 2023
  • Xanthan gum and starch compound biopolymer (XS), an environmentally friendly soil-binding material produced from natural resources, has been suggested as a slope protection material to enhance soil strength and erosion resistance. Insufficient wet strength and the consequent durability concerns remain, despite XS biopolymer-soil treatment showing high strength and erosion resistance in the dried state, even with a small dosage of soil mass. These concerns need to be solved to improve the field applicability and post-stability of this treatment. This study explored the utilization of an alkaline-based cation crosslinking method using calcium hydroxide and sodium hydroxide to induce non-thermal gelation, resulting in the enhancement of the wet strength and durability of biopolymer-treated soil. Laboratory experiments were conducted to assess the unconfined compressive strength and cyclic wetting-drying durability performance of the treated soil using a selected recipe based on a preliminary gel formation test. The results demonstrated that the uniformity of the gel structure and gelling time varied depending on the ratio of crosslinkers to biopolymer; consequently, the strength of the soil was affected. Subsequently, site soil treated with the recipe, which showed the best performance in indoor assessment, was implemented on the field slope at the bridge abutment via compaction and pressurized spraying methods to assess feasibility in field implementation. Moreover, the variation in surface soil hardness was monitored periodically for one year. Both slopes implemented by the two construction methods showed sufficient stability against detachment and scouring, with a higher soil hardness index than the natural slope for a year.

Shear Load-Transfer Function of Rock-Socketed Drilled Shafts Considering Borehole Roughness (굴착면 거칠기를 고려한 암반 근입 현장타설말뚝의 주면 하중전이함수 제안)

  • Seol, Hoon-Il;Woo, Sang-Yoon;Han, Keun-Taek;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.23-35
    • /
    • 2006
  • Shear load transfer characteristics of rock-socketed drilled shafts were analyzed. The constant normal stiffness (CNS) direct shear tests were performed to identify the major influencing factors of shaft resistance, i.e., unconfined compressive strength, borehole roughness, normal stiffness, initial confining stress, and material properties. Based on the CNS tests, shear load transfer function of drilled shafts in rocks is proposed using borehole roughness and the geological strength index (GSI), which indicates discontinuity and surface condition of rock mass in Hoek-Brown criterion (1997). The proposed load-transfer function was verified by the load test results of seven rock-socketed drilled test shafts subjected to axial loads. Through comparisons of the results of load tests, it is found that the load-transfer function by the present study is in good agreement with the general trend observed by in situ measurements, and thus represents a significant improvement in the prediction of load transfer of drilled shafts.

Study on Cement-based Grout for Closed-loop Vertical Grout Heat Exchanger (수직 밀폐형 지중열교환기 뒤채움재로서 시멘트 그라우트의 적용성 검토)

  • Park, Moon-Seo;Wi, Ji-Hae;Lee, Chul-Ho;Choi, Hang-Seok;Kang, Shin-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.107-115
    • /
    • 2010
  • In this paper, the applicability of cement grout bas been studied as an alternative to bentontite grout to backfill ground heat exchangers. To provide an optimal mixture design, the groutabilty and thermal conductivity of cement grouts with various mixture ratios were experimentally evaluated and compared. The unconfined compression strength of cement grout specimen was measured, which was exposed to cyclic temperature variation ranging from $50^{\circ}C$ to $-5^{\circ}C$. In addition, the integrity of the interface between circulating HDPE pipes and cement grout was evaluated by performing equivalent hydraulic conductivity tests, on the specimen. in which a pipe locates at the center of the specimen.

Analysis of Compressive Strength of Lightweight Air-mixed Soil According to the Properties of Soil (원료토의 특성에 따른 경량기포혼합토의 압축강도 영향인자 분석)

  • Song, Jun-Ho;Im, Jong-Chul;Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.157-166
    • /
    • 2008
  • To investigate the relationship between compressive strength ($q_u$) of Lightweight Air-mixed soil (LAS) and its physical deformation coefficient ($E_{50}$), a series of unconfined compressive tests have been performed on specimens of LAS according to various dredged soil types by percentage of sand, silt and clay. From the results it was found that the cement content ($C_i$) and unit weight (${\gamma}_m$) are most influence factors on strength, and percentage of sand, silt, clay by grain size analysis (KS F2302) have more effect on compressive strength than other physical properties of soil. It was also found that the rate of strength (a) increases with curing time, but it reduces with the increase of percentage of clay ($C_%$).

Turbidity Calibration of Borehole Roughness Measurement System (BKS-LRPS) Usable in Water (수중에서 사용가능한 굴착공 벽면거칠기 측정 시스템(BKS-LRPS)의 굴착공 내 혼탁도 보정에 관한 연구)

  • Park, Bong-Geun;Choi, Yong-Kyu;Kim, Myung-Hak;Kwon, Oh-Kyun;Nam, Moon-S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.25-32
    • /
    • 2008
  • Based on recent studies, the side resistance of rock socketed drilled shafts was affected by unconfined compressive strength of rock, socket roughness, rock types and joints, and initial normal stress. Especially, the socket roughness was affected by rock types and joints, drilling methods, and diameters of pile. In this study, a new roughness measurement system (BKS-LRPS, Backyoung-KyungSung Laser Roughness Profiling System) usable in water was developed. Based on the laboratory model tests, an EMD (Effective Measurement Distances) according to various turbidity was proposed as $EMD=1149.2{\times}T_{b}^{-0.64}$.

A Comparative Study on the Tensile Strength of Frozen Soil according to Test Methods (시험 방법에 따른 동결토의 인장강도)

  • Seo, Young-Kyo;Kang, Hyo-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.57-66
    • /
    • 2008
  • In this study, the blast-induced vibration effects on the structural stability of the adjacent tunnel and the stability were estimated with respect to the allowable peak particle velocity (PPV). The blasting distance from the tunnel satisfying the allowable PPV was estimated based on the analytical solutions, United States Bureau of Mines (USBM) suggestions, and the equations used in the subway in Seoul. The allowable blasting distance was estimated by using finite difference analysis (FDA) and the behavior of the concrete lining and rock bolts was examined and the stability of those was estimated during the blast. Research results show that the blast-induced vibration effects on the structural stability are negligible for the concrete lining but relatively large for the rock bolts.

Design of IGM Socketed Drilled Shafts Using Texas Cone Penetrometer Tests (텍사스 콘 관입시험을 이용한 IGM에 근입된 현장타설말뚝의 설계)

  • Nam, Moon-S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.55-67
    • /
    • 2006
  • Modern methods for designing IGM(Intermediate Geomaterial) socketed drilled shafts require knowledge of the compressive strength and modulus of the IGM. However, the weathered IGMs at many sites prohibit the recovery of samples of sufficient length and integrity to test cores in either unconfined or triaxial compression tests. Since rational design procedures usually require values of compressive strength, surrogate methods must be employed to estimate the compressive strength of the IGM. A surrogate method considered in this study was Texas cone penetrometer tests which were performed at several sites in North Central Texas. Correlations of Texas cone penetrometer tests and compressive strengths of cores from these formations are provided in the paper. In order to develop the relationships between Texas cone penetrations and side and base resistance of IGM socketed drilled shafts, three filed load tests were conducted in the same sites. Based on the field study and literature reviews, a design method for IGM socketed drilled shafts using Texas cone penetration test was proposed.

Calibration of Borehole Roughness Measurement System for Large Diameter Drilled Shafts in Water (수중에서 적용가능한 대구경 현장타설말뚝의 굴착공 벽면거칠기 측정장치의 보정에 관한 연구)

  • Park, Bong-Geun;Nam, Moon-S.;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.5-21
    • /
    • 2009
  • Based on recent studies on rock socketed drilled shafts, it was found that the side resistance of rock socketed drilled shafts is affected by unconfined compressive strength of rock, socket roughness, rock types and joints, and initial normal stress. Especially, the socket roughness is affected by rock types and joints, drilling methods, and diameters. Since existing roughness measurement systems could be conducted only in the air, a new roughness measurement system, which can measure rock socket roughness in the air and also in the water, is needed. However, the development of new roughness measurement system fur civil engineers has been faced with difficulties of electrical applications. In this study, the laboratory verification system far BKS-LRPS (Backyoung-KyungSung Laser Roughness Profiling System) was developed, which can be applied both in the water and air. Based on the laboratory verification, it was found that the improved BKS-LRPS could define effective measurement distances for the conditions reflecting the apparatus and in-situ situations.

Uplift Capacity Estimation of Bond-type Rock Anchors Based on Full Scale Field Tests (실규모 현장시험을 통한 부착형 암반앵커의 인발저항력 평가)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.5-15
    • /
    • 2009
  • This paper presents the results of full-scale uplift load tests performed on 24 passive anchors grouted to various lengths at Okchun and Changnyong site. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of 1~6 m. The majority of installations used D51 mm high grade steel rebar to induce rock failure prior to rod failure. However, a few installations included the use of D32 mm rebar at relatively deeper anchored depth so as to induce rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. In addition to field tests, laboratory pullout tests were conducted to determine bond strength and bond stress-shear slip relation at the tendon/grout interface when a corrosion protection sheath is installed in the cement-based grout. The test results show that the ultimate tendon-grout bond strength is measured from 18~25% of unconfined compressive strength of grout. One of the important results from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible.