• Title/Summary/Keyword: unconfined

Search Result 738, Processing Time 0.027 seconds

Backfill Materials for Underground Facility with Recycling Materials - Quantification of Design Parameters (재활용재료를 이용한 지하매설물용 뒤채움재 - 설계입력변수 정량화)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.91-96
    • /
    • 2011
  • The design, construction and management of underground facilities as infrastructure of nation should be properly carried out. One of reasons for underground facilitie's failure is a non-proper construction of backfill materials. This is common for circular underground pipes. A non-proper compaction is the cause of settlement and decrease of performance of underground facilities. The use of controlled low strength materials is an alternative to reduce the couple of failure problems. The flowability, self-cementation, and non-compaction are the major advantages to use the controlled low strength materials. In this research, couple of recycled materials, such as in-situ soil, water-treatment sludge, and crumb rubbers, were adopted. The basic properties of each materials were determined according to KS or ASTM. Also, couple of laboratory tests were carried out to get the design parameters for geotechnical and roadway area.

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Friction behavior of controlled low strength material-soil interface

  • Han, WooJin;Kim, Sang Yeob;Lee, Jong-Sub;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.407-415
    • /
    • 2019
  • A controlled low strength material (CLSM) is a highly flowable cementitious material used for trench backfilling. However, when applying vertical loads to backfilled trenches, shear failure or differential settlement may occur at the interface between the CLSM and natural soil. Hence, this study aims to evaluate the characteristics of the interface friction between the CLSM and soils based on curing time, gradation, and normal stress. The CLSM is composed of fly ash, calcium sulfoaluminate cement, sand, silt, water, and an accelerator. To investigate the engineering properties of the CLSM, flow and unconfined compressive strength tests are carried out. Poorly graded and well-graded sands are selected as the in-situ soil adjacent to the CLSM. The direct shear tests of the CLSM and soils are carried out under three normal stresses for four different curing times. The test results show that the shear strengths obtained within 1 day are higher than those obtained after 1 day. As the curing time increases, the maximum dilation of the poorly graded sand-CLSM specimens under lower normal stresses also generally increases. The maximum contraction increases with increasing normal stress, but it decreases with increasing curing time. The shear strengths of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. Moreover, the friction angle for the CLSM-soil interface decreases with increasing curing time, and the friction angles of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. The results suggest that the CLSM may be effectively used for trench backfilling owing to a better understanding of the interface shear strength and behavior between the CLSM and soils.

A Study on the Strength Properties and Life Cycle Assessment of Recycled Fine Aggregate Concrete (순환잔골재 혼입 콘크리트의 강도 특성 및 전과정 환경영향 평가 연구)

  • Choi, Won-Young;Kim, Sang-Heon;Lee, Sea-Hyun;Jeon, Chan-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • The purpose of this study is to confirm the strength characteristics of concrete according to the mixing ratio of recycled fine aggregates and to use it as basic data for the use of recycled fine aggregates in concrete. For this purpose, the target design compression strength was set at 27MPa. Considering practical use of recycled aggregate, the mixing ratio of recycled fine aggregate was set at 0, 30, 60, and 100%, and the unconfined concrete and hardened concrete were tested. The LCA method was used to evaluate the environmental impact of recycled fine aggregate concrete, and the effectiveness of recycled fine aggregate in the production of concrete was verified.

Mechanical behaviour of waste powdered tiles and Portland cement treated soft clay

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • The main objective of this study is to evaluate and compare the efficiency of ordinary Portland cement (OPC) in enhancing the unconfined compressive strength of soft soil alone and soft soil mixed with recycled tiles. The recycled tiles have been used to treat soft soil in a previous research by Al-Bared et al. (2019) and the results showed significant improvement, but the improved strength value was for samples treated with low cement content (2%). Hence, OPC is added alone in this research in various proportions and together with the optimum value of recycled tiles in order to investigate the improvement in the strength. The results of the compaction tests of the soft soil treated with recycled tiles and 2, 4, and 6% OPC revealed an increment in the maximum dry density and a decrement in the optimum moisture content. The optimum value of OPC was found to be 6%, at which the strength was the highest for both samples treated with OPC alone and samples treated with OPC and 20% recycled tiles. Under similar curing time, the strength of samples treated with recycled tiles and OPC was higher than the treated soil with the same percentage of OPC alone. The stress-strain curves showed ductile plastic behaviour for the untreated soft clay and brittle behaviour for almost all treated samples with OPC alone and OPC with recycled tiles. The microstructural tests indicated the formation of new cementitious products that were responsible for the improvement of the strength, such as calcium aluminium silicate hydrate. This research promotes recycled tiles as a green stabiliser for soil stabilisation capable of reducing the amount of OPC required for ground improvement. The replacement of OPC with recycled tiles resulted in higher strength compared to the control mix and this achievement may results in reducing both OPC in soil stabilisation and the disposal of recycled tiles into landfills.

Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber

  • Karimi, Amirhossein;Nematzadeh, Mahdi;Mohammad-Ebrahimzadeh-Sepasgozar, Saleh
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.467-482
    • /
    • 2020
  • This research focused on analyzing the post-fire behavior of high-performance concrete-filled steel tube (CFST) columns, with the concrete containing tire rubber and steel fibers, under axial compressive loading. The finite element (FE) modeling of such heated columns containing recycled aggregate is a branch of this field which has not received the proper attention of researchers. Better understanding the post-fire behavior of these columns by measuring their residual strength and deformation is critical for achieving the minimum repair level required for structures damaged in the fire. Therefore, to develop this model, 19 groups of confined and unconfined specimens with the variables including the volume ratio of steel fibers, tire rubber content, diameter-to-thickness (D/t) ratio of the steel tube, and exposure temperature were considered. The ABAQUS software was employed to model the tested specimens so that the accurate behavior of the FE-modeled specimens could be examined under test conditions. To achieve desirable results for the modeling of the specimens, in addition to the novel procedure described in this research, the modified versions of models presented by previous researchers were also utilized. After the completion of modeling, the load-axial strain and load-lateral strain relationships, ultimate strength, and failure mode of the modeled CFST specimens were evaluated against the test data, through which the satisfactory accuracy of this modeling procedure was established. Afterward, using a parametric study, the effect of factors such as the concrete core strength at different temperatures and the D/t ratio on the behavior of the CFST columns was explored. Finally, the compressive strength values obtained from the FE model were compared with the corresponding values predicted by various codes, the results of which indicated that most codes were conservative in terms of these predictions.

Case Study: Groundwater Recharge Hydrograph in Pyeongchang River (평창강 지하수 함양곡선 연구)

  • Kwak, Jaewon
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.173-182
    • /
    • 2021
  • It is important to extract and assess low-flow recession characteristics for water resources management in the upper reaches of a stream. It is difficult to express the groundwater flow recession characteristics for streamflow synthetically. The linear recession model has been widely used by baseflow recession analysis for reason of simplicity and convenience, but recent studies show that nonlinear recession models fit well, and the relationship between the reservoir storage of shallow unconfined aquifers and the groundwater discharge was to be identified as nonlinear in the literature based on the analysis of numerous streamflow recession curves. The objective of the study is to decode these nonlinear characteristics, including evaporation loss, storage, and recharge of groundwater using streamflow. By analyzing the observed time series of streamflow from the study area, which is the Pyeongchang River basin in Korea, the main components of the underlying groundwater balance, namely, discharge, evaporation loss, storage, and recharge, can be identified and quantified. As a result of the study, depletion of groundwater by evapotranspiration losses through the water uptake of tree roots was found to bias the recession curves and the estimated reservoir parameters. The seasonality of both rainfall and potential evaporation, analysis of the recession curves, stratified according to time of the year, allowed the quantification of evapotranspiration loss as a function of a calendar month and stored groundwater storage.

Engineering Characteristics Assessment of Rapid Set Controlled Low Strength Material for Sewer Pipe Using Excavated Soil (굴착토를 활용한 속경성 유동성 채움재의 공학적 특성 평가)

  • Kim, Young-Wook;Lee, Bong-Chun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.450-457
    • /
    • 2020
  • In this study, engineering characteristics such as flowability, segregation and compressive strength by age to derive fast hardening material mixing proportion using excavated soil. And based on optimal mixing proportion, field simulation experiment conducted in laboratory to examine the effectiveness of the method such as kelly ball drop test and soil penetration test for reviewing the following process. As as a result of evaluation, in case of kelly ball drop test and soil penetration test were securing the following process initiation time 3 hours after place CLSM. As results of these assessments, kelly ball drop test and soil penetration test were applicable for revewing following process in construction field besides unconfined compressive strength method.

A Study on Cover Material of Waste Landfill with Engineered Stone Sludge (폐기물 매립지의 복토재로 엔지니어드스톤 슬러지의 활용에 관한 연구)

  • Kim, Youngtae;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.7
    • /
    • pp.5-10
    • /
    • 2022
  • The industrial waste is becoming a big problem in the aspect of spatial and environmental in domestic and international. Therefore, the waste reduction and recycling policy has been being implemented as a way to solve this problem. The engineered stone sludge, which is waste, is generated duing the engineered stone production process. since engineered stone sludge is mostly treated by landfill, an increase in the amount of the sludge leads to an increase in landfill sites and treatment costs. therefore, there is a need for a method of resourcization with engineered stone sludge. So, laboratory tests (Plastic and liquid limits, compaction, unconfined compression and permeability test) were conducted to confirm the possibility of using engineered stone sludge mixed with weathered granite soil as a cover material for landfill in this study. The result shows that the mixed soil material with less that 62.5% of engineered stone sludge can be used as a cover material for landfill.

A Fundamental Study on the Development of Soil Stabilization Materials for Soil Mixing Method using Vietnam Fly Ash and Blast Furnace Slag (베트남 플라이애시 및 고로슬래그를 활용한 지반혼합공법용 지반안정재 개발을 위한 기초연구)

  • Jae-Hyun, Park;Wan-Gyu, Yoo;Se-Gwan, Seo;Kwang-Wu, Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.111-121
    • /
    • 2022
  • It has been reported that current amount of coal ash remains almost 100 million tons and 5.85 million tons of blast furnace slag are generated annually in Vietnam. Vietnam government has encouraged the industries to increase the use of coal ash and blast furnace slag as construction materials as well as in cement production institutionally. However, limited can be applied in the construction field yet. Therefore, in this study, basic performance analysis on five different kinds of fly ash from Vietnam was conducted. In addition, the performances of blast furnace slags generated in Vietnam and Korea were compared and evaluated. Soil stabilizer compressive strength test and solidified soil unconfined compressive strength test were conducted as the basic data for the development of soil stabilizer applied to the soil mixing method using fly ash and blast furnace slag generated in Vietnam. The results showed that the Vietnamese fly ash and blast furnace slag can be used as the raw materials for soil stabilization and improvement.