• Title/Summary/Keyword: unconfined

Search Result 738, Processing Time 0.033 seconds

Physical and Mechanical Characteristics of the Antarctic Rocks Exposed to the Extreme Environment (극한환경에 노출된 남극 암석의 물리적·역학적 특성)

  • Kim, Kiju;Kim, YoungSeok;Hong, Seung Seo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.275-284
    • /
    • 2012
  • The Antarctic continent exposed to strong wind, very low temperature, and extremely dry condition. The freezing-thawing cycles under this extreme environment change the mechanical characteristics of rocks near the ground surface. To investigate the effect of freezing-thawing cycles under the extreme environment understand on geotechnical properties of rocks, rocks from the Antarctica were collected from two places: (1) West Antarctic Cape Burks and (2) East Antarctic Terra Nova Bay areas. The rock characteristics of these two areas were described and compared. For Terra Nova Bay area, rock characteristics of rocks near the surface and depths exceeding 2.9 m were examined. The 'near-the-surface rocks' averages of absorption rate, P-wave velocity, and unconfined compressive strength were 0.56%, 3,717 m/s, and 109MPa, respectively; while, those values of 'deep-sited rocks' were 0.24%, 4,670 m/s, and 88MPa. From the measurements, it was found that the effects of weathering were not significant on mechanical characteristics (strength) but were pronounced on physical characteristics(absorption and P-wave velocity).

Engineering Characteristic of High Density Expansion Materials for Structure Restoration Technology (기초침하복원을 위한 급속 팽창재료의 공학적 특성에 관한 연구)

  • Shin, Eun-Chul;Cha, Yong-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • The differential settlement on ordinary concrete buildings and paved roads are often occurred and which caused the failure of structure. The grouting method can be used for correcting the settlement of the structure. However, the grouting method has a disadvantage like that it takes a long time period to get a desired strength, and it is not a continuous in the phase of reinforced effect. In this paper, as an injecting material called GPCON to complement disadvantage, it is estimated about the characteristic that has a high-density expansion. With the changing of ground conditions and amount of injection, the change of physical strength on compression, the stability against chemical material are studied through the filming of SEM. The physical strength with compression is developed to high strength due to mixing with other material. It is not react with most of the material on chemical conditions except the component of alcohol. Through the SEM test. it is confirmed that the strength of material was increased as formation is being densified.

  • PDF

Characteristics of the Freezing and Thawing for Controlled Low-Strength Material Using Pond Ash (매립회를 활용한 저강도 고유동화재의 동결융해 특성)

  • Hyun, Hogyu;Kim, Hyungi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.51-56
    • /
    • 2010
  • Recently, the land area for many people has been limited because of industrialization and modernization in Korea. The large-scale constructions like the reclamation development projects have been progressed to resolve this problem mentioned above. Therefore, as many of the useful construction materials as possible are needed to perform the largescale construction projects. Many studies for the utilization of pond ash which has a similar characteristic of sand have been conducted and there has been often occurred many structural problems on roadbed in winter. Therefore, the characteristics of the freezing and thawing for Controlled Low-Strength Material(CLSM) using pond ash were analyzed and evaluated by unconfined compressive strength test and mass loss test in this study. As a result of this study, it was confirmed that new CLSM using pond ash with cement(8.2% by weight) was able to stand for the freezing and thawing behavior and was satisfied with the standard of Portland Cement Association.

Comparison of Airborne Nanoparticle Concentrations between Carbon Nanotubes Growth Laboratories based on Containment of CVD (탄소나노튜브 성장 실험실에서 CVD 밀폐 여부에 따른 공기 중 나노입자 농도 비교)

  • Ha, Ju-Hyun;Shin, Yong-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • Although the usage of nanomaterials including carbon nanotubes (CNTs) has increased in various fields, scientific researches on workers' exposures and controls of these materials are very limited. The purpose of this study was to compare the airborne nanoparticles concentrations from two university laboratories conducting experiments of CNTs growth based on containment of thermal chemical vapor deposition (CVD). Airborne nanoparticle concentrations in three metrics (surface area concentration, particle number concentration, and mass concentrations) were measured by task using three direct reading instruments. In a laboratory where CVD was not contained, the surface area concentration, number concentration and mass(PM$_1$) concentration of airborne nanoparticles were 1.5 to 3.5 times higher than those in the other laboratory where CVD was confined. The ratio of PM$_1$ concentration to total suspended particles(TSP) in the laboratory where CVD was not confined was about 4 times higher than that in the other laboratory. This indicates that CVD is a major source of airbone nanoparticles in the CNTs growth laboratories. In conclusion, researchers performing CNTs growth experiments in these laboratories were exposed to airborne nanoparticles levels higher than background levels, and their exposures in a laboratory with the unconfined CVD were higher than those in the other laboratory with the confined CVD. It is recommended that in the CNTs growth laboratories adequate controls including containment of CVD be implemented for minimizing researchers' exposures to airborne nanoparticles.

Applicability of IGM theory Partial Drilled Shaft constructed on Granite Rocks (화강풍화암에 시공된 부분현장타설말뚝의 IGM이론의 적용성)

  • Ahn, Tae-Bong
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.379-385
    • /
    • 2013
  • In this study, partial drilled shafts (Bottom Cast-in-place Concrete pile) were applied to the pilot test site to ensure the bearing capacity; we used the skin friction force in the IGM to analyze the feasibility of the application of IGM theory. The soil characteristics were analyzed in cohesive, non-smear, and smooth conditions for the application of the IGM theory via geotechnical investigation and measurement of the disturbance and surface roughness. Static load and load transfer tests were conducted to calculate the allowable bearing capacity and the skin friction force by depth. The skin friction force increased with increase in the depth and standard settlement, showing a very high correlation. In addition, because the unconfined strength ($q_u$), which is the most important parameter in the cohesive IGM, cannot be measured in a weathered granite area, the static load and load transfer test results and the N value were used to obtain $q_u$.

A Study on Development of Reaction Rate Equation for Reactive Flow Simulation in Energetic Materials (고에너지 물질의 연소반응 해석을 위한 반응속도식 개발 및 정의에 관한 연구)

  • Kim, Bo-Hoon;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.47-57
    • /
    • 2012
  • A modified ignition and growth(I&G) model which is necessary to simulate the combustion phenomena of energetic materials and an analytical model determining the unknown parameters of the reaction rate equation are proposed. The modified I&G model sustains important physical implications with overcoming some problems of previous rate equations. This rate model consists of ignition term which represents the formation of the hotspot due to void collapse and growth term which means the shock to detonation transition phenomena. Also, the theoretical model is used to investigate the combustion characteristics of certain energetic materials before running Hydrocode by pre-determination of unknown parameter, $b,\;G,\;x,\;I$. The analytical model provides efficient and highly accurate results rather than previous method which simulated the unconfined-rate-stick via the numerical means.

Distributions of Hydrogeological Variables and Flow Field on GIS Digital Map (GIS 수치지도를 이용한 수리지질학적 변수와 지하수 유동의 분포)

  • Lee, Cheo K.
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.2
    • /
    • pp.45-58
    • /
    • 1999
  • Digital map is utilized for an effective display of the distributions of the hydrogeological variables such as water table height(hydraulic head) and log-transmissivity(lnT) in north Pohang, KyungBug. Specifically the geostatistical method kriging is used to construct the distributions in an unconfined aquifer from a finite set of measured data. The experimental variograms for both the head and lnT suggest spherical models with nugget of 0 and range of 6km. The kriged results by using these variograms show that the head decreases primarily from the west to the east with a large peak in the north-western part and lnT is at the maximum level in the central part with outwardly decreasing trend. The constructed delineation is also used to calculate the flow field in the region. Finite differences with second order consistency are used to calculate the fluxes in the east(x) and north(y) across a vertical cross-section of unit width and height equal to the thickness of the wet zone in the aquifer. It is demonstrated that the flow is dominantly in the east with diverging trend on the eastern hillside of the water table peak. A few convergent spots also appear.

  • PDF

The effect of hydrated lime on the petrography and strength characteristics of Illite clay

  • Rastegarnia, Ahmad;Alizadeh, Seyed Mehdi Seyed;Esfahani, Mohammad Khaleghi;Amini, Omid;Utyuzh, Anatolij Sergeevich
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • In this research, soil samples of the Kerman sedimentary basin, Iran, were investigated through laboratory tests such as petrography (Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF) and X-Ray Diffraction (XRD)), physical and mechanical characteristics tests. The soil in this area is dominantly CL. The petrography results showed that the dominant clay mineral is Illite. This soil has made some problems in the earth dams due to the low shear strength. In this study, a set of samples were prepared by adding different amounts of lime. Next, the petrography and strength tests at the optimum moisture content were performed. The results of SEM analysis showed substantial changes in the soil structure after the addition of lime. The primary structure was porous and granular that was changed to a uniform and solid after the lime was added. According to XRD results, dominant mineral in none stabilized soil and stabilized soil are Illite and calcite, respectively. The pozzolanic reaction resulted in the reduction of clay minerals in the stabilized samples and calcite was known as the soil hardener material that led to an increase in soil strength. An increase in the hydrated lime leads to a decrease in their maximum dry unit weight and an increase in their optimum moisture content. Furthermore, increasing the hydrated lime content enhanced the Unconfined Compressive Strength (UCS) and soil's optimum moisture. An increase in the strength is significantly affected by the curing time and hydrated lime contents, as the maximum compressive strength is achieved at 7% hydrated lime. Moreover, the maximum increase in the California Bearing Ratio (CBR) achieved in clay soils mixed with 8% hydrated lime.

Effects of sulphuric acid on mechanical and durability properties of ECC confined by FRP fabrics

  • Gulsan, Mehmet Eren;Mohammedameen, Alaa;Sahmaran, Mustafa;Nis, Anil;Alzeebaree, Radhwan;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.199-220
    • /
    • 2018
  • In this study, the effects of sulphuric acid on the mechanical performance and the durability of Engineered Cementitious Composites (ECC) specimens were investigated. The carbon fiber reinforced polymer (CFRP) and basalt fiber reinforced polymer (BFRP) fabrics were used to evaluate the performances of the confined and unconfined ECC specimens under static and cyclic loading in the acidic environment. In addition, the use of CFRP and BFRP fabrics as a rehabilitation technique was also studied for the specimens exposed to the sulphuric acid environment. The polyvinyl alcohol (PVA) fiber with a fraction of 2% was used in the research. Two different PVA-ECC concretes were produced using low lime fly ash (LCFA) and high lime fly ash (HCFA) with the fly ash-to-OPC ratio of 1.2. Unwrapped PVA-ECC specimens were also produced as a reference concrete and all concrete specimens were continuously immersed in 5% sulphuric acid solution ($H_2SO_4$). The mechanical performance and the durability of specimens were evaluated by means of the visual inspection, weight change, static and cyclic loading, and failure mode. In addition, microscopic changes of the PVA-ECC specimens due to sulphuric acid attack were also assessed using scanning electron microscopy (SEM) to understand the macroscale behavior of the specimens. Results indicated that PVA-ECC specimens produced with low lime fly ash (LCFA) showed superior performance than the specimens produced with high lime fly ash (HCFA) in the acidic environment. In addition, confinement of ECC specimens with BFRP and CFRP fabrics significantly improved compressive strength, ductility, and durability of the specimens. PVA-ECC specimens wrapped with carbon FRP fabric showed better mechanical performance and durability properties than the specimens wrapped with basalt FRP fabric. Both FRP materials can be used as a rehabilitation material in the acidic environment.

Applicability of Preconsolidation Pressure Interpretations of Korean Marine Clays (국내 해성점토 지반에 대한 선행압밀압력 평가방법의 적용성)

  • Jeong, Sang-Guk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.93-101
    • /
    • 2017
  • In this study, a subjective weighting factors were awarded based on some indication of the difficulty of assessing the preconsolidation stress using traditional methods (Casagrande, Onitsuka et al., Silva, Becker et al., Janbu and Karlsrud methods) such as those proposed by Casagrande and Janbu using undisturbed sample obtained from Gwangyang dredged clay with high plasticity located in the southern area of Korean peninsular. These numbers only assess the relative ease of finding preconsolidation stress and say nothing regarding the accuracy of the value. The data were compared with measurements of undrained shear strength using strength incremental ratio, checking where or not the values are in the range of 0.25 to 0.35 (typical values of Korean marine clay) and analyzing standard deviation(degree of variability). The measurements of undrained shear strength were obtained from unconfined compression tests (UCT). When determining preconsolidation stress of Korean marine clay, at first, the work method proposed by Becker et al. and the bilogarithmic method proposed by Onitsuka et al. should be used. In addition, preconsolidation pressure should be estimated using the traditional Casagrande method as a basic of comparison.