DOI QR코드

DOI QR Code

A Study on Development of Reaction Rate Equation for Reactive Flow Simulation in Energetic Materials

고에너지 물질의 연소반응 해석을 위한 반응속도식 개발 및 정의에 관한 연구

  • 김보훈 (서울대학교 기계항공공학부, IAAT) ;
  • 여재익 (서울대학교 기계항공공학부, IAAT)
  • Received : 2012.05.22
  • Accepted : 2012.07.31
  • Published : 2012.10.01

Abstract

A modified ignition and growth(I&G) model which is necessary to simulate the combustion phenomena of energetic materials and an analytical model determining the unknown parameters of the reaction rate equation are proposed. The modified I&G model sustains important physical implications with overcoming some problems of previous rate equations. This rate model consists of ignition term which represents the formation of the hotspot due to void collapse and growth term which means the shock to detonation transition phenomena. Also, the theoretical model is used to investigate the combustion characteristics of certain energetic materials before running Hydrocode by pre-determination of unknown parameter, $b,\;G,\;x,\;I$. The analytical model provides efficient and highly accurate results rather than previous method which simulated the unconfined-rate-stick via the numerical means.

고에너지 물질의 연소 현상을 해석하기 위하여 반드시 필요한 반응속도식과 이를 구성하고 있는 미 정상수를 결정하는 이론적 방법을 제안하였다. 개선된 I&G 모델은 기존의 반응속도식이 갖던 문제점들을 효과적으로 극복하면서 동시에 중요한 물리적 의미를 내포하는 형태로 제안되었다. 이는 공극붕괴(void collapse)로 인한 hotspot의 생성을 의미하는 점화 모델과 폭굉(detonation)으로의 천이를 의미하는 화염 발달 모델의 합으로 구성되어 있다. 또한 함께 소개된 이론적 모델은 고에너지 물질의 수치해석 기법인 Hydrocode를 사용하기 전에 미정상수 $b,\;G,\;x,\;I$를 결정함으로써 특정 고에너지 물질의 연소 특성을 규명하는데 사용된다. 이론적 방법은 기존의 고에너지 물질의 연소 시험을 모사한 수치해석적 방식보다 효율적이고 정확도가 높은 결과를 제공하므로 진일보 된 방법이라고 할 수 있다.

Keywords

References

  1. Tarver, C. M., Kury, J. W. and Don, B. R., "Detonation waves in triaminotrinitro benzene," Journal of Applied Physics, Vol. 82, No. 8, 1997, pp.3771-3782 https://doi.org/10.1063/1.365739
  2. Kim, C. H. and Yoh, J. J., "Surface chemical reaction of LASER ablated aluminum sample for detonation initiation," Journal of Applied Physics, Vol. 109, No. 9, 093510, 2011 https://doi.org/10.1063/1.3585860
  3. Bdzil, J. B. and Stewart, D. S., "Modeling two-dimensional detonation with detonation shock dynamics," Physics of Fluids, Vol. 1, No. 7, 1989, pp.1261-1267 https://doi.org/10.1063/1.857349
  4. Lee, E. L. and Tarver, C. M., "Phenomenological model of shock initiation in heterogeneous explosives," Physics of Fluids, Vol. 23, No. 12, 1980, pp.2362-2372 https://doi.org/10.1063/1.862940
  5. Souers, P. C., Anderson, S., Mercer, J., McGuire, E. and Vitello, P., "JWL++: A Simple Reactive Flow Code Package for Detonation," Propellants, Explosives, Pyrotechnics, Vol. 25, No. 2, 2000, pp.54-58 https://doi.org/10.1002/(SICI)1521-4087(200004)25:2<54::AID-PREP54>3.0.CO;2-3
  6. Guilkey, J. E., Harman, T. B. and Banerjee, B., "An Eulerian-Lagrangian approach for simulating explosions of energetic devices," Computers and Structures, Vol. 85, Nos. 11-14, 2007, pp.660-674 https://doi.org/10.1016/j.compstruc.2007.01.031
  7. Kim, K. H. and Yoh, J. J., "Shock Compression of Condensed Matter using Eulerian Multi-material Method," Journal of Applied Physics, Vol. 103, No. 11, 113507, 2008 https://doi.org/10.1063/1.2937936
  8. Eyring, H., Powell, R. M., Duffey, G. E. and Parlin, R. B., "The Stability of Detonation," Chemical Reviews, Vol. 45, No. 144, 1949, pp.69-181 https://doi.org/10.1021/cr60140a002
  9. Souers, P. C. and Vitello, P., "Analytic Model of Reactive Flow," Propellants, Explosives, Pyrotechnics, Vol. 30, No. 5, 2005, pp.381-385 https://doi.org/10.1002/prep.200500029
  10. Wackerle, J., Johnson, J. O. and Halleck, P. M., "Shock Initiation of High-Density PETN," 6th Symposium on Detonation, ACR-221, LA-UR-76-1201, 1976, pp.20-29
  11. Wackerle, J., Rabie, R. L., Ginsberg, M. G. and Anderson, A. B., "A Shock Initiation Study of PBX-9404," in Proceedings of the Symposium on High Dynamic Pressures, LA-UR-78-1219, 1978, pp.127-139
  12. Cooper, S. R., Benson, D. J. and Nesterenko, V. F., "A numerical exploration of the role of void geometry on void collapse and hot spot formation in ductile materials," International Journal of Plasticity, Vol. 16, No. 5, 2000, pp.525-540 https://doi.org/10.1016/S0749-6419(99)00072-8
  13. Jones, D. A., Kemister, G. and Borg, R. A. J., "Numerical simulation of detonation in condensed phase explosives," DSTO-TR-0705, AR-010-605, 1998

Cited by

  1. Sympathetic Detonation Modeling of PBXN-109 vol.18, pp.5, 2014, https://doi.org/10.6108/KSPE.2014.18.5.001
  2. Numerical Simulations of Dynamic Response of Cased Reactive System Subject to Bullet Impact vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-B.2014.38.6.525