• Title/Summary/Keyword: unconfined

Search Result 738, Processing Time 0.035 seconds

Development of Tensile Strength Measurement Technique on Compacted Fine-Grained Soils (다짐된 세립토의 인장강도 측정법의 개발)

  • Kim, Tae-Hyung;Kim, Chan-Kee;Yun, Jung-Man;You, Seung-Kyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1538-1545
    • /
    • 2005
  • Theoretical and experimental result studies of the unconfined penetration test (UP) method are conducted to suggest a new test method by improving the UP method for determination of the tensile strength of compacted fine-grained soils. From the theoretical aspect, the tensile strength of the specimen is estimated from the maximum load by the theory of perfect plasticity with assumptions, sufficient local deformability and modified Mohr-Coulomb failure criterion. Experimentally, some factors including relative size of specimen-disc, disc diameter, and loading rate are needed more study, because these factors significantly affect the results of tensile strength. Improvement of the alignement between two discs and specimen in the UP test is also necessary to eliminate the error due to eccentrically loading.

  • PDF

A Study on the Strength and Deformation Characteristics of Clay due to the Specimen Shaping (시료성형에 따른 점성토의 변형.강도 특성에 관한 연구)

  • Park, Jong-Su;Park, Choon-Sik;Jang, Jeong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1227-1232
    • /
    • 2005
  • This study carried out unconfined compression tests to identify deformation and strength characteristics of clay. The conclusions are presented in the following. (1) The comparison of unconfined compression strengths according to specimen disturbance showed great differences, except for a few data. (2) The comparison of ${E_{50}}'s$ according to specimen disturbance proved that the two values were similar in general. (3) The comparison of strains at the peak according to specimen disturbance showed that non-shaped specimens had been slightly more disturbed in general. (4) The comparison of $E_{50}/q_u$ also suggested that non-shaped specimens had been slightly more disturbed in general.

  • PDF

Thermal Transport from an Aluminum Foam Heat Sink in a Confined Impinging Air Jet (국한 충돌공기제트에 의한 발포 알루미늄 방열기의 열전달 특성)

  • Hwang, Jun;Kim, Seo-Young;Kang, Byung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.496-503
    • /
    • 2003
  • An experimental study has been performed on thermal transport from an aluminum foam heat sink under a confined impinging air jet. Three kinds of aluminum foam heat sinks with 10, 20 and 40 PPI and a conventional pin-fin heat sink are tested in the present study. The jet Reynolds number is varied in the range of Re=667~5672 The effect of the confinement disk diameter and the distance between the confinement disk and the heater surface on the averaged Nusselt number is investigated in detail. The results are also compared with those of the unconfined impinging air jet. The critical distance, at which thermal performance shows a minimum compared to the unconfined jet impinging, will be described in terms of the Reynolds number and the pore density of the aluminum foam.

Lateral loading test for partially confined and unconfined masonry panels

  • Tu, Yi-Hsuan;Lo, Ting-Yi;Chuang, Tsung-Hua
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.379-390
    • /
    • 2020
  • Four full-scaled partially confined and unconfined masonry panels were tested with monotonic lateral loads. To study the effects of vertical force and boundary columns, two specimens with no boundary columns were subjected to different vertical forces, while two wing-wall specimens had the column placed eccentrically and in the middle, respectively. The specimens with no boundary columns exhibited ductile rocking behavior, where the lateral strength increased with increasing vertical compression. The wing-wall specimens with columns behaved as strut-and-tie systems. The column-panel interaction resulted in greater strength, lower deformation capacity and differences in failure modes. A comparison with analytical models showed that rocking strength can be accurately estimated using vertical force and the panel aspect ratio for panels with no boundary columns. The estimation for lateral strength on the basis of a panel section area indicated scattered error for wing-wall specimens.

Slaking and Particle-Separation Characteristics of the Organic Fine Soil in Paddy Fields (전답용 유기질 세립토의 슬레이킹 내구성 및 분쇄 특성)

  • Cho, Sung-Min
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • Clayey paddy soils should be mixed with other good coarse soils to be used as a material for the lining, or, embankment. However, it has been difficult to separate soil particles from each other because of the internal cohesion in the soil gradation(separation) characteristics of the fine soil were investigated by various laboratory tests including the slaking durability test. Degradation rate of the soil were dependent upon the clay content and the initial water content before the submergence. The amount of degradations decreased as initial water content increased with exponential functions. The dried specimens separated into the particles after 24 hours of the submergence and specimens which water contents were less than 10% also separated into the particles after 2, or 3 days of the submergence. Compaction curves and the unconfined strength were not varied before and after the submergence. However, unconfined strength decreased as water content increased.

A Study on the Design-parameter of Mixed Ground by Using Cement-type Stabilizer (시멘트계 고화재에 의해 혼합처리된 지반의 설계정수에 관한 연구)

  • 천병식;임해식;전진규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.79-89
    • /
    • 2000
  • The application of stabilization method has increased because of short construction periods, no environmental problems with dumped and replaced soil, assurance of required strength and economical effect with mid to small size construction. The unconfined and triaxial(UU-condition) compression tests were executed with each mixing sample for the study of the improvement effects and the effect of design-parameters by the stabilization methods. Three typical stabilizers, which are representative in Korea, were applied in this study, and three common soils(very soft clay, general weathered soil, common clay), which are common in Korea, were used in this study. In this study, the effect of engineering factors(soils, stabilizers and water contents, etc.) which are important parameters for the improvement effects of mixed ground by stabilizers, was analyzed. As results, the tendencies of design-parameters(unconfined compression strength, deformation modulus and strength parameter) are presented and the criteria of the application of stabilization methods are suggested.

  • PDF

Flexural ductility of RC beam sections at high strain rates

  • Pandey, Akhilesh K.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.537-552
    • /
    • 2013
  • Computation of flexural ductility of reinforced concrete beam sections has been proposed by taking into account strain rate sensitive constitutive behavior of concrete and steel, confinement of core concrete and degradation of cover concrete during load reversal under earthquake loading. The estimate of flexural ductility of reinforced concrete rectangular sections has been made for a wide range of tension and compression steel ratios for confined and unconfined concrete at a strain rate varying from $3.3{\times}10^{-5}$ to 1.0/sec encountered during normal and earthquake loading. The parametric studies indicated that flexural ductility factor decreases at increasing strain rates. Percentage decrease is more for a richer mix concrete with the similar reinforcement. The confinement effect has marked influence on flexural ductility and increase in ductility is more than twice for confined concrete (0.6 percent volumetric ratio of transverse steel) compared to unconfined concrete. The provisions in various codes for achieving ductility in moment resisting frames have been discussed.

Fluid Flow in a Multi-Layer Porous Medium (多層多孔質媒體內의 流體流動)

  • 이충구;서정윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.621-626
    • /
    • 1985
  • Unsteady groundwater flow in a three-layer unconfined aquifer has been studied theoretically and experimentally. Two different methods have been used in solving the governing equations of the flow, the nonlinear partial differential equations; (1) The governing equations are linearized for each layer and approximate solutions are obtained. (2) The governing equations are transformed to nonlinear ordinary differential equations, which are solved numerically by Runge-Kutta procedure. Fine, middle sized and coarse sands are used in the experiments. It is found that the solutions from the method(2) ( the reduction of partial differential equations to ordinary differential equations) give better agreement with the experimental results than the solution from the method(1).

Geotechnical Properties of Soil-Bentonite Mixtures (흙-벤토나이트 혼합물의 지반공학적 특성)

  • 채교익;권무남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.132-144
    • /
    • 2001
  • Iln order to figure out criteria of bentonite for using as impervious material of waste landfill, laboratory experiments were performed to reveal the geotechnical properties of soil-bentonite mixtures such as compaction test, direct shear test, unconfined compression test, triaxial compression test, consolidation test and permeability test. The results of the study are summarized as follows ; 1. Based on the compaction test, optimum moisture content increased with the increase of bentonite content, but maximum dry density decreased. 2. In unconfined compression test, the maximum strength of the soil-bentonite mixtures appeared at 10% bentonite content. The correlation equation between stress($\sigma$) and strain($\varepsilon$) of the soil-bentonite mixtures is given by ; $\sigma=\frac{a\cdot\varepsilon}{\varepsilon^n+b}$ 3. In shear test of the mixtures. the shear strength showed an increasing trend with increase of bentonite content and the maximum shear strength appeared at 10% bentonite content. 4. In consolidation test, the coefficient of compressibility $(a_v)$$(m_v)$$(C_v)$

  • PDF

Strength-stiffness Evaluation of Cemented Coarse Geomaterials (강화된 조립질 지반재료의 강도 및 강성 평가)

  • Cho, Chung-Yeon;Park, Seong-Wan;An, Dong-Seok;Park, Hee-Mun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.326-330
    • /
    • 2009
  • In this study, coarse-grained geomaterials were mixed with cementing binder. To do that, typical soils from road construction sites were selected to assess the strength and stiffness characteristics of cemented geomaterials mixed with cement and recycled fly ash. Mechanistic evaluation on these samples was performed depending on the various binder contents. Increasing cementing content tend to increase the resilient modulus under repeated loadings and unconfined strength respectively. In addition, the toughness of cemented geomaterials was also estimated in order to check the ability to resisting fatigue failure.

  • PDF