• Title/Summary/Keyword: uncertainty of type B

Search Result 55, Processing Time 0.03 seconds

Concept and Type for Degree of Freedom in Quality Statistics (품질통계에서 자유도 개념 및 유형)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.6
    • /
    • pp.193-196
    • /
    • 2007
  • This paper presents real examples of quality statistics for users to easily understand the concept and purpose for obtaining the degree of freedom. Moreover degree of freedom by Satterwaite can be used for linear combinations of unbiased variance. Finally effective degree of freedom by Welch-Satterthwaite is applicable to obtain expanded uncertainty considering type A and type B uncertainty.

Procedure for Uncertainty Evaluation of a Precision Electric Force Measuring Device and Its Application (고정밀 전기식 힘측정기의 불확도평가 절차 및 응용)

  • Kim, Gab-Soon;Kang, Dae-Im
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.161-167
    • /
    • 1999
  • This paper describes the calibration method and the calculation equations of expanded uncertainty for a precision electric force measuring device. The calibration of the electric force measuring device is performed three times (0 ${\circ}$(first time), $120{\circ}$(second time), $240{\circ}$(third time)) at each calibration point. It is usually selected ten points from zero load to rated load of the electric force measuring device. The expanded uncertainty is calculated by combining A type standard uncertainty and B type standard uncertainty. The calibration method and the calculation equations of expanded uncertainty can be widely used in the calibration of the precision electric force measuring device.

  • PDF

Calibration uncertainty of a spinning rotor gauge (스피닝 로터 게이지 교정 불확도)

  • 홍승수;임인태;신용현;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.7-15
    • /
    • 2003
  • Spinning Rotor Gauge (SRG) has been used to transfer standard gauge for international comparison at the high vacuum standards. We calibrated a spinning rotor gauge by using dynamic calibration system (DCS) that was a national high vacuum standards system. And its uncertainties were evaluated with the International Organization for Standardization (ISO), they were recognized ai A type uncertainty, B type uncertainty, combined Standard uncertainty, and expanded uncertainty. The combined standard uncertainties were $1.8007\times10^{-5}$ Pa ~ ~$4.8422\times10^{-5}$ Pa for this spinning rotor gauge.

Calibration and Uncertainty Measurement of Differential Mobility Analyzer Using 100 nm NIST SRM 1963 (100 nm NIST 표준입자를 이용한 미분형 전기 이동도 분석기의 교정 및 불확실도 측정)

  • Lee, Snag-Jin;Ahn, Jin-Hong;Ahn, Kang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1766-1771
    • /
    • 2003
  • House made differential mobility analyzer(DMA) is calibrated with NIST SRM 1691(300 nm PSL). Then the particle size and uncertainty for differential mobility analyzer(DMA) using the NIST SRM 1963(100 nm PSL). In result, calibration of prototype DMA is measured using 300 nm NIST SRM 1691, then sheath air flow was corrected 126.67 ㎤/s. Corrected sheath air flow is used in uncertainty measurement of prototype DMA. Uncertainty analysis is performed using NIST SRM 1963(100 nm PSL). The experimental result shows that NIST SRM 1963 is measured as 102.17 nm with a type A uncertainty of 0.33 nm.

Uncertainty Evaluation of Viscosity Measurement Standards (점도 측정표준 불확도 평가)

  • Choi, H.M.;Yoon, B.R.;Lee, Y.B.;Choi, Y.M.;Lee, S.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.295-301
    • /
    • 2005
  • Viscosity measurement standards were evaluated according to ISO/IEC 17025. The step-up procedure was employed to calibrate a series of capillary type master viscometers. Uncertainty was calculated with evaluation of various uncertainty factors affected in viscosity measurement. The maximum expanded uncertainty(U) of the master viscometer was $3.0{\times}10^{-3}$(at the confidence level of 95 %). This evaluation example will be useful in viscosity measurement uncertainty determination of other standard measurement.

  • PDF

Uncertainty in Determination of Menthol from Mentholated Cigarette (담배 중 멘톨 분석에 대한 불확도 측정)

  • 장기철;이운철;백순옥;한상빈
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.91-98
    • /
    • 2000
  • This study was carried out to evaluate the uncertainty in the analysis of menthol content from the mentholated cigarette. Menthol in the sample cigarette was extracted with methanol containing an anethole as an internal standard, and then analyzed by gas chromatography. As the sources of uncertainty associated with the analysis of menthol, were the following points tested, such as the weighing of sample, the preparation of extracting solution, the pipetting of extracting solution into the sample, the preparation of standard solution, the precision of GC injections for standard & sample solution, the GC response factor of standard solution, the reproducibility of menthol analysis, and the determination of water content in tobacco, etc. For calculating the uncertainties, type A of uncertainty was evaluated by the statistical analysis of a series of observation, and type B by the information based on supplier's catalogue and/or certificated of calibration. Sources of uncertainty were subsequently included and mathematically combined with the uncertainty arising from the assessment of accuracy to provide the overall uncertainty. It was shown that the main source of uncertainty came from the errors in the reproducibility of menthol and water determination, the purity of menthol reference material in the preparation of standard solution, and the precision of GC injections for sample solution. The errors in sample weighing and volume measurement contributed relatively little to the overall uncertainty. The expanded uncertainty in the mentholated cigarettes, Korean and American brand, at 0.95 level of statistical confidence was $\pm$0.06 and $\pm$0.07 mg/g for a menthol content of 1.89 and 2.32 mg/g, respectively.

  • PDF

A Study on Robustness of a Two-Degree-of-Freedom Servosystem with Nonlinear Type Uncertainty(II) - Rubust Stability Condition (비선형 불확실성에 대한 서보계의 강인성에 관한 고찰(II) - 강인 안정성 조건)

  • Kim, Young-Bok
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.99-105
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers a robust stability of this 2DOF servosystem with nonlinear type uncertainty in the system, and a robust stability condition for the servosystem is introduced. This result guarantees that if the plant uncertainty is in the permissible set defined by the condition, gain tuning can be carried out to suppress the influence of the plant uncertainties and disturbance inputs.

  • PDF

Uncertainty Evaluation of Ammonia Determination in Burley Tobacco (버어리종 담배중 암모니아성 질소에 대한 불확도 측정)

  • Lee Jeong-Min;Lee Kyoung-Ku;Han Sang-Bin
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.107-114
    • /
    • 2005
  • The uncertainty of measurement in quantitative analysis of ammonia by continuous-flow analysis method was evaluated following internationally accepted guidelines. The sources of uncertainty associated with the analysis of ammonia were the weighing of sample, the preparation of extracting solution, the addition of extracting solution into the sample, the reproducibility of analysis and the determination of water content in tobacco, etc. In calculating uncertainties, Type A of uncertainty was evaluated by the statistical analysis of a series of observation, and Type B by the information based on supplier's catalogue and/or certificated of calibration. It was shown that the main source of uncertainty was caused by the volume measurement of 1 mL and 2 mL, the purity of ammonia reference material in the preparation of standard solution, the reproducibility of analysis and the determination of water content of tobacco. The uncertainty in the addition of extraction solution, the sample weighing, the volume measurement of 50 mL and 100 mL, and the calibration curve of standard solution contributed relatively little to the overall uncertainty. The expanded uncertainty of ammonia determination in burley tobacco at $95\%$ level of confidence was $0.00997\%$.

Uncertainty of Total Alkaloids and Reducing Sugar Determination in Flue-cured Tobacco (황색종 담배중 전알카로이드와 환원당 분석에 대한 불확도 측정)

  • 백순옥;장기철;이운철;한상빈
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • This study was carried out to evaluate the uncertainty in the analysis of total alkaloids and reducing sugar content in flue-cured tobacco. The sources of uncertainty associated with the analysis of total alkaloids and reducing sugar were the weighing of sample, the preparation of extracting solution, the addition of extracting solution into the sample, the preparation of standard solution, the precision of calibration curve for standard solution, the reproducibility of analysis, and the determination of water content in tobacco, etc. For the calculating uncertainties, Type A of uncertainty was evaluated by the statistical analysis of a series of observation, and Type B by the information based on supplier’s catalogue and/or certificated of calibration. It was shown that the main source of uncertainty was caused by the calibration curve of standard solution, the reproducibility of analysis, the volume measurement of 1$m\ell$, and the purity of nicotine reference material in the preparation of standard solution. The uncertainty in the addition of extracting solution, the sample weighing, the volume measurement of 100$m\ell$, and the determination of water content of tobacco contributed relatively little to the overall uncertainty. The expanded uncertainty of total alkaloids and reducing sugar in flue-cured tobacco at 95% level of confidence was $\pm$0.12% and $\pm$0.54%, respectively.

  • PDF

Estimation of Measurement Uncertainty in Vitamin C Analysis from Vegetable and Fruit Juice (야채음료 중 비타민 C 분석에 있어서의 측정불확도 추정)

  • Kim, Young-Jun;Kim, Hyeon-Wee
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1053-1059
    • /
    • 2003
  • This study aimed to determine the amount of vitamin C from vegetable & fruit juice by high performance liquid chromatograhy (HPLC). Components for estimation of measurement uncertainty associated with the analysis of vitamin C, such as standard weight, purity, molecular weight, dilution of standard solution, calibration curve, recovery, and precision, were importantly applied. The estimation of uncertainty obtained with systematic and random error based on the GUM (Guide to the expression of uncertainty in measurement) and EURACHEM document with mathematical calculation and statistical analysis. The components, evaluated ty either Type A or Type B methods, were combined to produce an overall value of uncertainty known as the combined standard uncertainty. An expanded uncertainty was obtained by multiplying the combined standard uncertainty with a coverage factor (k) calculated from the effective degree of freedom. The content of vitamin C from vegetable and fruit juice was 27.53 mg/100g and the expanded uncertainty by multiplying by the coverage factor (k, 2.06) was 0.63 mg/100g at a 95% confidence level. It was concluded that the main sources were, in order of recovery and precision, weight and purity of the reference material, dilution of the standard solution, and calibration curve. Careful experiments on other higher uncertainties is further needed in addition to better personal proficiency in sample analysis in terms of accuracy and precision.