• Title/Summary/Keyword: uncertainties of measurement data

Search Result 104, Processing Time 0.031 seconds

The Effects of Measurement Errors on Frequency Response Functions(FRFs) (실험 오차가 주파수 응답함수에 미치는 영향)

  • Jung, Hae-Il
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Despite the highly sophisticated development of finite element analysis, a finite element model for structural dynamic analysis can be inaccurate or even incorrect due to the difficulties of correct modelling, uncertainties on the finite element input data and geometrical oversimplification, while the modal data extracted from measurement are supposed to be correct, even though incomplete. The assumption that the test results represent the true dynamic behaviour of the structure, however, may not be correct because of various measurement errors. The measurement errors are investigated and their effects on estimated frequency response functions(FRFs) are also investigated.

  • PDF

A Finite Memory Filter for Discrete-Time Stochastic Linear Delay Systems

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.216-220
    • /
    • 2019
  • In this paper, we propose a finite memory filter (estimator) for discrete-time stochastic linear systems with delays in state and measurement. A novel filtering algorithm is designed based on finite memory strategies, to achieve high estimation accuracy and stability under parametric uncertainties. The new finite memory filter uses a set of recent observations with appropriately chosen initial horizon conditions. The key contribution is the derivation of Lyapunov-like equations for finite memory mean and covariance of system state with an arbitrary number of time delays. A numerical example demonstrates that the proposed algorithm is more robust and accurate than the Kalman filter against dynamic model uncertainties.

Updating Inspection Data to Estimate Probability of Failure (파괴확률 산정을 위한 검측 데이터의 확률적 업데이트)

  • Chung, Tae-Young;Park, Heung-Min;Lee, Hak;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.645-650
    • /
    • 2007
  • According to most studies, assessment of aging structure is trend to detect flaw size by sensor than using existing subjective evaluation by expert for objective evaluation. But Uncertainties existing in the sensor make difference between measured flaw size and actual flaw size, In this paper, Probability of Detection(POD) have been used to quantify the uncertainties and POD is updated by relationship measured flaw size and actual flaw size (Heasler, 1990), also we proposed probabilistic updating approach method to improve measurement accuracy(the difference of measured PDF and actual PDF) by using updated POD.

  • PDF

Measurement Uncertainty Assessment of Altitude Performance Test for a Turboshaft Engine (터보샤프트 엔진 고공성능시험의 측정 불확도 평가)

  • Yang, In-Young;Lee, Bo-Hwa
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.59-64
    • /
    • 2010
  • Measurement uncertainty assessment was performed for altitude performance test for a turboshaft engine. Mathematical models of measurement were suggested for major performance parameters such as shaft horse power, fuel flow, specific fuel consumption, and airflow. The procedure was compared with the test of turbojet or turbofan engines. Uncertainty involved with the test condition measurement was assessed. Influence of the test condition measurement uncertainty on the corrected performance data was discussed. Uncertainty assessment result was provided for a example test case using a real altitude test facility. For major performance parameters, measurement uncertainties were assessed as 0.65~1.09% including the test condition measurement uncertainty, 0.36~0.94% not including it.

Uncertainty and Updating of Long-Term Prediction of Prestress in Prestressed Concrete Bridges (프리스트레스트 콘크리트 교량의 프리스트레스 장기 예측의 불확실성 및 업데이팅)

  • 양인환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.251-259
    • /
    • 2004
  • The prediction accuracy of prestress plays an important role in the quality of maintenance and the decision on rehabilitation of infrastructure such as prestressed concrete bridges. In this paper, the Bayesian statistical method that uses in-situ measurement data for reducing the uncertainties or updating long-term prediction of prestress is presented. For Bayesian analysis, prior probability distribution is developed to represent the uncertainties of creep and shrinkage of concrete and likelihood function is derived and used with data acquired in site. Posterior probability distribution is then obtained by combining prior distribution and likelihood function. The numerical results of this study indicate that more accurate long-term prediction of prestress forces due to creep and shrink age is possible.

Methodology for Reliability-based Assessment of Capacity-Rating of Plate Girder Railroad Bridges using Ambient Measurement Data (상시 계측 데이터를 이용한 신뢰성에 기초한 판형 철도교의 내하력 평가법)

  • Cho, Hyo Nam;Choi, Hyun Ho;Lee, Sang Yoon;Sun, Jong Wan
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.187-196
    • /
    • 2003
  • Today, the Working Stress Rating (WSR) is being widely used for the capacity-rating and the safety assessment of railroad steel bridges. Since it cannot incorporate the uncertainties, several studies have been carried out in order to get over the incompleteness of the conventional capacity-rating and safety assessment. A system reliability-based equivalent capacity-rating method, which can evaluate the capacity of existing bridges, has been recently proposed. For more efficient reliability analysis, probabilistic parameters of the random variables in the limit-state models should be reasonably evaluated. Especially, uncertainties for live load effects must be realistically included. In this study, an improved limit-state model was used for the system reliability-based equivalent strength method. This model can incorporate the probabilistic parameters obtained from ambient measurement data. To demonstrate the applicability of the improved system reliability-based equivalent capacity rating method, this was applied to the existing steel plate girder bridge for comparison with the conventional capacity-rating and safety assessment.

Reliability of Measurement Estimation in Altitude Engine Test (엔진 고도 시험의 측정 신뢰성 평가)

  • Lee, Jin-Kun;Yang, In-Young;Yang, Soo-Seok;Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • The altitude engine test is a sort of engine performance tests carried out to measure the performance of a engine at the simulated altitude and flight speed environments prior to that at the flight test. During the performance test of a engine, various values such as pressures and temperatures at different positions, air flow rate, fuel flow rate, and the load by thrust are measured. These measured values are used to derive the representative performance values such as the net thrust and the specific fuel consumption through a momentum equation. Hence each of the measured values has certain effects on the total uncertainty of the performance values. In this paper, the combined standard uncertainties of the performance variables at the engine test were estimated by the uncertainty analysis of the measurement values and the repeatability and reproducibility of the altitude test measurement were assessed by the analysis of variation on the repeated test data with different operator groups.

  • PDF

Vertex Detection Algorithm for three-dimensional object (3차원 물체의 정점 검출 알고리듬)

  • Choi, Byung-Keol;Moon, Sung-Hwan;Kang, Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2218-2221
    • /
    • 1998
  • Data compression of 3 dimensional objects has limitations such as large data size, slow processing time, uncertainties of noise and measurement errors. Recently, along with activities of information transmission in internet, the researches in 3 dimensional information processing become a very important issue as the exchanges of large data are available. In this paper, we propose a data compression algorithm which first estimates the surfaces of 3 dimensional objects and then apply them to the FCV(Fuzzy c-Varieties) Clustering to obtain 3 dimensional edges and vertices, and represent the results.

  • PDF

Assessment of modal parameters considering measurement and modeling errors

  • Huang, Qindan;Gardoni, Paolo;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.717-733
    • /
    • 2015
  • Modal parameters of a structure are commonly used quantities for system identification and damage detection. With a limited number of studies on the statistics assessment of modal parameters, this paper presents procedures to properly account for the uncertainties present in the process of extracting modal parameters. Particularly, this paper focuses on how to deal with the measurement error in an ambient vibration test and the modeling error resulting from a modal parameter extraction process. A bootstrap approach is adopted, when an ensemble of a limited number of noised time-history response recordings is available. To estimate the modeling error associated with the extraction process, a model prediction expansion approach is adopted where the modeling error is considered as an "adjustment" to the prediction obtained from the extraction process. The proposed procedures can be further incorporated into the probabilistic analysis of applications where the modal parameters are used. This study considers the effects of the measurement and modeling errors and can provide guidance in allocating resources to improve the estimation accuracy of the modal data. As an illustration, the proposed procedures are applied to extract the modal data of a damaged beam, and the extracted modal data are used to detect potential damage locations using a damage detection method. It is shown that the variability in the modal parameters can be considered to be quite low due to the measurement and modeling errors; however, this low variability has a significant impact on the damage detection results for the studied beam.

Precision control of a mobile/task robot using visual information (비젼 정보를 이용한 이동/작업용 로봇의 정밀제어)

  • 한만용;이장명
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.71-79
    • /
    • 1997
  • This paper introduces a methodology of the precise control of a mobile/task robot using visual information captured bythe camera attached at the hand of the task robot. The major problem residing in the precise control of mobile/task robot is providing an accurate and stable base for the task robot through the precise control of mobile robot. On account of uncertainties on the surface, the precise control of mobile robot is not feasible without using external position sensor. In this paper, the methodology for the precise control of mobile robot is proposed, which recognizes the position of mobile robot using the camera attached at the hand of the task robot. While the task robot is approaching to an assembly part, the position of mobile robot is measured using the line correspondence between the image capturesd by the camera and the real assembly part, and using the kinematic transformation from the hand of the task robot to the mobile robot. To verify the solidness of this method, experimental data for the measurement of camera position/orientation and for the precise control of mobile robot using measurement are shown.

  • PDF