• Title/Summary/Keyword: uncertain nonlinear system

Search Result 249, Processing Time 0.033 seconds

Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties (불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

Design of Sliding Hyperplanes in Nonlinear Variable Structure Systems with Uncertainties (불확실성을 갖는 비선형 가변구조시스템의 슬라이딩 초평면 설계)

  • 박동원;최승복;김재문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1985-1996
    • /
    • 1994
  • A new design method of sliding hyperplanes is proposed in the synthesis of a variable structure controller for robust tracking of general nonlinear multi-input-output(MIMO) uncertain systems of relative degree higher than two. Input/ output(I/O) linearzation is firstly undertaken by employing the concept of relative degree and minimum phase followed by the construction of sliding mode controllers. Sliding hyperplanes are then derived from the inherent properties of companion matrix and ideal sliding mode characterized in I/O linearized system. Subsequently, the gradient magnitudes of the sling hyperplanes are determined in an optimal manner by considering a quadratic performance index to be evaluated at two phases; a reaching phase and a sliding phase. The proposed design methodology is relatively straightforward and systematic compared with conventional strategies such as geometric approach or pole assignment technique. A nonlinear governor and exciter control problem for a power system is adopted herein in order to demonstrate the design efficiency and also favorable and robust control performances.

A State Observer for MINO Nonlinear Systems (다입력 다출력 비선형 시스템의 상태 관측기 설계)

  • Lee, Sung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.5
    • /
    • pp.8-12
    • /
    • 2008
  • In this paper, the robust state observer for nonlinear systems with unknown disturbance is proposed. The proposed method has an advantage in that it can reduce the effect of disturbance on estimation error of observer up to a specified level. Therefore, our design a roach can deal with a larger class of uncertain nonlinear system than the existing methods. The sufficient conditions on the existence of robust observer are characterized by well grown linear matrix inequality. Finally, an illustrative example is given to verify the proposed design scheme.

Neural-networks-based Disturbance Observer and Tracker Design in the Presence of Unknown Control Direction and Non-affine Nonlinearities (미지의 제어 방향성과 비어파인 비선형성을 고려한 신경망 기반 외란 관측기와 추종기 설계)

  • Kim, Hyoung Oh;Yoo, Sung Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.666-671
    • /
    • 2017
  • A disturbance-observer-based adaptive neural tracker design problem is investigated for a class of perturbed uncertain non-affine nonlinear systems with unknown control direction. A nonlinear disturbance observer (NDO) design methodology using neural networks is presented to construct a tracking control scheme with the attenuation effect of an external disturbance. Compared with previous control results using NDO for nonlinear systems in non-affine form, the major contribution of this paper is to design a NDO-based adaptive tracker without the sign information of the control coefficient. The stability of the closed-loop system is analyzed in the sense of Lyapunov stability.

Adaptive control of uncertain system using input-output linearization (입출력 선형화를 응용한 불확실한 시스템의 적응제어에 관한 연구)

  • 백운보;윤강섭;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1081-1084
    • /
    • 1991
  • A technique of indirect adaptive control based on certainty equivalence for input output linearization of nonlinear system is proven convergent by Teel. It incorporates an adaptive observer for identifying unknown system states and parameters and input-output linearizing controller for robust tracking. In this study, we show that robustness and tracking performances are improved considerably by using its normalized form of Teel's observer-based identifier. Simple examples are presented as illustration.

  • PDF

An intelligent integrated control system for steering and traction of electric vehicles (전기자동차의 조향과 추진을 위한 지능형 통합 제어 시스템)

  • 서일홍;박명관
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.21-31
    • /
    • 1996
  • An intelligent integrated control system is designed for the active steering and the left/right traction force distribution control of electric vehicles, where input-output linearization is employed. Also, a fuzzy-rule-based cornering force estimator is suggested to avoid using an uncertain highly nonlinear expression, and a neural network compensator is additively utilized for the estimator to correctly find cornering forece. With these techniques, the proposed control system is shown by simulation results to be robust against drastic change of the external environments such as road conditions.

  • PDF

Input-Output Feedback Linearizing Control with Parameter Estimation Based On A Reduced Design Model

  • Non, Kap-Kyun;Dongil Shin;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.110-110
    • /
    • 2001
  • By the state transformation including independent outputs functions, a nonlinear process model can be decomposed into two subsystems; the one(design model) is described in output variables as new states and used for control system synthesis and the other(disturbance model) is described in the original unavailable states and its couplings with the design model are treated as uncertain time-varying parameters in the design model. Its existence with respect to the design model is ignored. So, the design model is and uncertain time-variant system. Control synthesis based on a reduced design model is a combined form of a time-variant input-output linearization with parameter estimation. The parameter estimation is also based on the design model and it gives the parameter estimates such that the estimated outputs follow the actual outputs in a specified way. The disturbances form disturbance model and as well all the other uncertainties affecting the outputs will be reflected into the estimated parameters used in the linearizing control law.

  • PDF

Hybrid Control of 5-Link Biped Robot Using a Wavelet Neural Network (웨이블릿 신경회로망을 이용한 5링크 이족로봇의 하이브리드 제어)

  • Kim, Chul-Ha;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2717-2719
    • /
    • 2005
  • Generally, biped walking is difficult to control because a biped robot is a nonlinear system with various uncertainties. In this paper, we propose a hybrid control system to improve the efficiency of position tracking performance of biped locomotion. In our control system, the wavelet neural network (WNN) based on Sliding mode controller is used as a main controller which estimates a biped robot model, and the compensated controller is proposed to compensate the estimation error. A WNN is utilized to estimate uncertain and nonlinear system parameters, where the weights of WNN are trained by adaptive laws that are induced from the Lyapunov stability theorem. Finally, the effectiveness of the proposed control system is verified through computer simulations.

  • PDF

A fuzzy-model-based controller for a helicopter system with 2 degree-of-freedom in motion (2 자유도 헬리콥터 시스템의 제어를 위한 퍼지 모델 기반 제어기)

  • Chang, Wook;Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1949-1951
    • /
    • 2001
  • This paper deals with the control of a nonlinear experimental helicopter system by using the fuzzy-model-based control approach. The fuzzy model of the experimental helicopter system is constructed from the original nonlinear dynamic equations in the form of an affine Takagi-Sugeno (TS) fuzzy system. In order to design a feasible switching-type fuzzy-model-based controller, the TS fuzzy system is converted to a set of uncertain linear systems, which is used as a basic framework to synthesize the fuzzy-model-based controller.

  • PDF

Robust Model-Following Controller for Uncertain Dynamical Systems by State-Space Representation (불확실한 동적 시스템의 상태공간 표현 강인 모델추종 제어기)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.12
    • /
    • pp.575-583
    • /
    • 2001
  • It is hard to obtain good robust performance and robust stability for uncertain and time-varying system. The robust 2-DOF controller is frequently used to obtain the desired response and the good robustness. Two controllers can be independently designed. Generally, one controller reduces sensitivity to parameter variations, nonlinear effects, and other disturbances. On the other hand, the other controller reduces the error between the desired command and output. In this paper, the various robust perfect MFCs(model-following controllers) combined with TDC(Time Delay Control) are designed, and the imperfect stable MFC combined with TDC and SMC(Sliding Mode Control) is proposed. These controllers are based on the method of designing robust 2-DOF controllers for dynamic system with uncertainty. The performance of the proposed imperfect sable MFC has been evaluated through computer simulations. The simulation results indicate that the proposed controller shows the excellent performance characteristics for an overhead crane with uncertain and time-varying parameters.

  • PDF