• 제목/요약/키워드: uncertain dynamics

검색결과 161건 처리시간 0.021초

Dynamics Identification and Robust Control Performance Evaluation of Towing Rope under Rope Length Variation

  • Tran, Anh-Minh D.;Kim, Young-Bok
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.58-65
    • /
    • 2016
  • Lately, tugboats are widely used to maneuver vessels by pushing or towing them where tugboats use rope. In order to correctly control the motion of tugboat and towed vessel, the dynamics of the towline would be well identified. In real application environment, the towing rope length changes and the towing load is not constant due to the various sizes of towed vessel. And there are many ropes made by many types of materials. It means that it is not easy to obtain rope dynamics, such that it is too difficult to satisfy the given control purpose by designing control system. Thus real time identification or adaptive control system design method may be a solution. However it is necessary to secure sufficient information about rope dynamics to obtain desirable control performance. In this paper, the authors try to have several rope dynamic models by changing the rope length to consider real application conditions. Among them, a representative model is selected and the others are considered as uncertain models which are considered in control system design. The authors design a robust control to cope with strong uncertain and nonlinear property included in the real plant. The designed control system based on robust control framework is evaluated by simulation.

부정합조건 불확실성을 갖는 비선형 시스템을 위한 새로운 강인한 적분 가변 구조 제어기 (A New Robust Integral Variable Structure Controller for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1173-1178
    • /
    • 2010
  • In this note, a systematic design of a new robust nonlinear integral variable structure controller based on state dependent nonlinear form is presented for the control of uncertain more affine nonlinear systems with mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear integral variable structure controller is presented. To be linear in the closed loop resultant dynamics and remove the reaching phase problems, the linear integral sliding surface is suggested. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear integral sliding surface, which will be investigated in Theorem 1. Through a design example and simulation studies, the usefulness of the proposed controller is verified.

다변수 슬라이딩 모드 제어에 의한 부정합조건 불확실성을 갖는 다입출력 비선형 시스템의 강인그로벌 지수 안정화 (A Robust Global Exponential Stabilization of Uncertain Affine MIMO Nonlinear Systems with Mismatched Uncertainties by Multivariable Sliding Mode Control)

  • 이정훈
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1754-1760
    • /
    • 2011
  • In this paper, a systematic design of a robust nonlinear multivariable variable structure controller based on state dependent nonlinear form is presented for the control of MIMO uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After a MIMO uncertain affine nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a robust nonlinear variable structure controller is presented. To be linear in the closed loop resultant dynamics, the linear sliding surface is applied. A corresponding diagonalized control input is proposed to satisfy the closed loop global exponential stability and the existence condition of the sliding mode on the linear sliding surface, which will be investigated in Theorem 1. Through a design example and simulation study, the usefulness of the proposed controller is verified.

부정합조건 불확실성을 갖는 비선형 시스템을 위한 새로운 강인한 가변구조제어기 (A New Robust Variable Structure Controller for Uncertain Affine Nonlinear Systems with Mismatched Uncertainties)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.945-949
    • /
    • 2010
  • In this paper, a systematic design of a new robust nonlinear variable structure controller based on state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear variable structure controller is presented. To be linear in the closed loop resultant dynamics, the linear sliding surface is applied. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear sliding surface, which will be investigated in Theorem 1. Through a design example and simulation study, the usefulness of the proposed controller is verified.

A CLASS OF ASYMPTOTICALLY STABILIZING STATE FEEDBACK FOR UNCERTAIN NONLINEAR SYSTEMS

  • Hashimoto, Yuuki;Wu, Hansheng;Mizukami, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.271-274
    • /
    • 1995
  • This paper is concerned with the problem of robust stabilization of uncertain single-input and single-output nonlinear systems. Based on the input/output linearization approach for nonlinear state feedback synthesis in conjunction with Lyapunov methods, a stabilizing state feedback controller is proposed. Compared with the controllers reported in the control literature, instead of uniform ultimate boudedness, the controller proposed in this paper can guarantee uniform asymptotic stability of nonlinear systems in the presence of uncertainties. The required information about uncertain dynamics in the system is only that the uncertainties are bounded in Euclidean norm by known functions of the system state.

  • PDF

부정합조건 불확실성과 외란을 갖는 비선형 시스템을 위한 비선형 적분형 슬라이딩 면을 갖는 새로운 강인한 가변구조제어기 (A New Robust Variable Structure Controller With Nonlinear Integral-Type Sliding Surface for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties and Disturbance)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1295-1301
    • /
    • 2010
  • In this note, a systematic general design of a new robust nonlinear variable structure controller based on state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with mismatched uncertainties and mismatched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear variable structure controller is presented. To be linear in the closed loop resultant dynamics, the nonlinear integral-type sliding surface is applied. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the nonlinear integral-type sliding surface, which will be investigated in Theorem 1. Through a design example and simulation studies, the usefulness of the proposed controller is verified.

토크 한계를 갖는 불확실한 로봇 매니퓰레이터의 퍼지 논리를 이용한 강인 제어기의 설계 (Design of a Robust Controller for Uncertain Robot Manipulators with Torque Saturation using a Fuzzy Algorithm)

  • 최형식;박재형
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.138-144
    • /
    • 2000
  • Robot manipulators, which are nonlinear structures and have uncertain system parameters, have complex in dynamics when are operated in unknown environment. To compensate for estimate errors of the uncertain system parameters and to accomplish the desired trajectory tracking, nonlinear robust controllers are appropriate. However, when estimation errors or tracking errors are large, they require large input torques, which may not be satisfied due to torque limits of actuators. As a result, their stability can not be guaranteed. In this paper, a new robust control scheme is presented to solve stability problem and to achieve fast trajectory tracking in the presence of torque limits. By using fuzzy logic, new desired trajectories which can be reduced are generated based on the initial desired trajectory, and torques of the robust controller are regulated to not exceed torque limits. Numerical examples are shown to validate the proposed controller using an uncertain two degree-of-freedom underwater robot manipulator.

  • PDF

구동기의 동특성을 고려한 로봇매니퓰레이터의 강인제어기 설계 (A robust controller design for robot manipulators with actuator dynamics)

  • 박광석;황동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.139-142
    • /
    • 1997
  • In this paper, a robust controller is proposed to achieve an accurate tracking for an uncertain nonlinear plant with actuator dynamics. The extent of parameter uncertainty can be quantified by using linear parameterization technique. A switching controller is proposed to guarantee the global asymptotic stability of the plant. In order to eliminate the chattering caused by the switching controller, a smoothing controller is designed using the boundary layer technique around the sliding surface and guarantees the uniform ultimate boundedness of the tracking error.

  • PDF

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

불확실한 주파수의 정현파 외란이 있는 기록형 광 디스크 드라이브의 강인 제어 (Robust Control for the Rewritable Optical Disk Drives with Sinusoidal Disturbance of Uncertain Frequencies)

  • 이문노;진경복;문정호
    • 제어로봇시스템학회논문지
    • /
    • 제8권8호
    • /
    • pp.682-690
    • /
    • 2002
  • This paper presents an output feedback controller design method for uncertain linear systems with sinusoidal disturbance of uncertain frequencies. The controller needs to compensate for the performance deterioration due to the uncertain frequencies of sinusoidal disturbance. To this end, we introduce a virtual system including the dynamics corresponding to the uncertain frequencies and design a controller which minimizes the output difference between the virtual system and the closed-loop system. In other words, the controller is designed so that the closed-loop system approximates the virtual system. The feedback controller is achieved by solving an LMI optimization problem involving a robust $H_{\infty}$ constraint. The advantages of the proposed design method are examined by comparing it with a design method that only minimizes the $H_{\infty}$ norm of the transfer function between the sinusoidal disturbance and the output. The proposed design method is applied to the track-following system of rewritable optical disk drives and is evaluated through an experiment.