• Title/Summary/Keyword: umbral calculus

Search Result 6, Processing Time 0.02 seconds

SOME UMBRAL CHARACTERISTICS OF THE ACTUARIAL POLYNOMIALS

  • Kim, Eun Woo;Jang, Yu Seon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.73-82
    • /
    • 2016
  • The utility of exponential generating functions is that they are relevant for combinatorial problems involving sets and subsets. Sequences of polynomials play a fundamental role in applied mathematics, such sequences can be described using the exponential generating functions. The actuarial polynomials ${\alpha}^{({\beta})}_n(x)$, n = 0, 1, 2, ${\cdots}$, which was suggested by Toscano, have the following exponential generating function: $${\limits\sum^{\infty}_{n=0}}{\frac{{\alpha}^{({\beta})}_n(x)}{n!}}t^n={\exp}({\beta}t+x(1-e^t))$$. A linear functional on polynomial space can be identified with a formal power series. The set of formal power series is usually given the structure of an algebra under formal addition and multiplication. This algebra structure, the additive part of which agree with the vector space structure on the space of linear functionals, which is transferred from the space of the linear functionals. The algebra so obtained is called the umbral algebra, and the umbral calculus is the study of this algebra. In this paper, we investigate some umbral representations in the actuarial polynomials.

TWO VARIABLE HIGHER-ORDER FUBINI POLYNOMIALS

  • Kim, Dae San;Kim, Taekyun;Kwon, Hyuck-In;Park, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.975-986
    • /
    • 2018
  • Some new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomilas were introduced recently by Kilar and Simsek ([5]) and we study the two variable Fubini polynomials as Appell polynomials whose coefficients are the Fubini polynomials. In this paper, we would like to utilize umbral calculus in order to study two variable higher-order Fubini polynomials. We derive some of their properties, explicit expressions and recurrence relations. In addition, we express the two variable higher-order Fubini polynomials in terms of some families of special polynomials and vice versa.

q-ADDITION THEOREMS FOR THE q-APPELL POLYNOMIALS AND THE ASSOCIATED CLASSES OF q-POLYNOMIALS EXPANSIONS

  • Sadjang, Patrick Njionou
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1179-1192
    • /
    • 2018
  • Several addition formulas for a general class of q-Appell sequences are proved. The q-addition formulas, which are derived, involved not only the generalized q-Bernoulli, the generalized q-Euler and the generalized q-Genocchi polynomials, but also the q-Stirling numbers of the second kind and several general families of hypergeometric polynomials. Some q-umbral calculus generalizations of the addition formulas are also investigated.

THE n-TH TWISTED CHANGHEE POLYNOMIALS AND NUMBERS

  • Rim, Seog-Hoon;Park, Jin-Woo;Pyo, Sung-Soo;Kwon, Jongkyum
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.741-749
    • /
    • 2015
  • The Changhee polynomials and numbers are introduced in [6]. Some interesting identities and properties of those polynomials are derived from umbral calculus (see [6]). In this paper, we consider Witt-type formula for the n-th twisted Changhee numbers and polynomials and derive some new interesting identities and properties of those polynomials and numbers from the Witt-type formula which are related to special polynomials.

ON FINITE TIMES DEGENERATE HIGHER-ORDER CAUCHY NUMBERS AND POLYNOMIALS

  • Jeong, Joohee;Rim, Seog-Hoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1427-1437
    • /
    • 2016
  • Cauchy polynomials are also called Bernoulli polynomials of the second kind and these polynomials are very important to study mathematical physics. D. S. Kim et al. have studied some properties of Bernoulli polynomials of the second kind associated with special polynomials arising from umbral calculus. T. Kim introduced the degenerate Cauchy numbers and polynomials which are derived from the degenerate function $e^t$. Recently J. Jeong, S. H. Rim and B. M. Kim studied on finite times degenerate Cauchy numbers and polynomials. In this paper we consider finite times degenerate higher-order Cauchy numbers and polynomials, and give some identities and properties of these polynomials.

Korobov Polynomials of the Fifth Kind and of the Sixth Kind

  • Kim, Dae San;Kim, Taekyun;Kwon, Hyuck In;Mansour, Toufik
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.329-342
    • /
    • 2016
  • Recently, Korobov polynomials have been received a lot of attention, which are discrete analogs of Bernoulli polynomials. In particular, these polynomials are used to derive some interpolation formulas of many variables and a discrete analog of the Euler summation formula. In this paper, we extend these family of polynomials to consider the Korobov polynomials of the fifth kind and of the sixth kind. We present several explicit formulas and recurrence relations for these polynomials. Also, we establish a connection between our polynomials and several known families of polynomials.