
KYUNGPOOK Math. J. 56(2016), 329-342

http://dx.doi.org/10.5666/KMJ.2016.56.2.329

pISSN 1225-6951 eISSN 0454-8124

c© Kyungpook Mathematical Journal

Korobov Polynomials of the Fifth Kind and of the Sixth Kind

Dae San Kim
Department of Mathematics, Sogang University, Seoul 121-742, South Korea
e-mail : dskim@sogang.ac.kr

Taekyun Kim
Department of Mathematics, Kwangwoon University, Seoul, South Korea
e-mail : tkkim@kw.ac.kr

Hyuck In Kwon
Department of Mathematics, Kwangwoon University, Seoul 139-701, South Korea
e-mail : sura@kw.ac.kr

Toufik Mansour∗

University of Haifa, Department of Mathematics, 3498838 Haifa, Israel
e-mail : tmansour@univ.haifa.ac.il

Abstract. Recently, Korobov polynomials have been received a lot of attention, which

are discrete analogs of Bernoulli polynomials. In particular, these polynomials are used to

derive some interpolation formulas of many variables and a discrete analog of the Euler

summation formula. In this paper, we extend these family of polynomials to consider the

Korobov polynomials of the fifth kind and of the sixth kind. We present several explicit

formulas and recurrence relations for these polynomials. Also, we establish a connection

between our polynomials and several known families of polynomials.

1. Introduction

Carlitz [3, 4] introduced the degenerate version of the Bernoulli polynomials
called the degenerate Bernoulli polynomials. On the other hand, Korobov [14, 15]
studied the first degenerate version of the Bernoulli polynomials of the second kind
called Korobov polynomials of the first kind. It is noted here, in passing, that the
degenerate Bernoulli polynomials were rediscovered by Ustinov [19] under the name
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of Korobov polynomials of the second kind. Recently, various kinds of degenerate
versions of the familiar polynomials like Bernoulli polynomials, Euler polynomials
and their variants were investigated by many researchers. In [10], introduced were
two kinds of new degenerate versions of Bernoulli polynomials of the second kind.
Here, we would like to present yet two other degenerate versions of Bernoulli poly-
nomials of the second kind. We will give properties, explicit expression, recurrence
relations, and connections with other familiar polynomials by using the technique
of umbral calculus.

The Bernoulli polynomials of the second kind bn(x) are given by the generating
function

t

log(1 + t)
(1 + t)x =

∑
n≥0

bn(x)
tn

n!
.(1.1)

For x = 0, bn = bn(0) are called the Bernoulli numbers of the second kind. The
Krobov polynomials Kn(λ, x) of the first kind are given by

λt

(1 + t)λ − 1
(1 + t)x =

∑
n≥0

Kn(λ, x)
tn

n!
.

When x = 0, Kn(λ) = Kn(λ, 0) are called the Korobov numbers of the first kind.
Since 2002, Korobov polynomials have been received a lot of attention, which are
discrete analogs of Bernoulli polynomials (see [15]). In particular, these polynomials
are used to derive some interpolation formulas of many variables and a discrete
analog of the Euler summation formula (see [19]). Also, these polynomials are
used to study a class of two-player games on posets with a rank function, in which
each move of the winning strategy is unique (see [7]). Here, we introduce Korobov
polynomials of the fifth kind Kn,5(λ, x) and of the sixth kind Kn,6(λ, x) respectively
given by

t

log(1 + t)
(1 + λ)

x
λ

(1+t)λ−1
λ =

∑
n≥0

Kn,5(λ, x)
tn

n!
,(1.2)

λt

(1 + t)λ − 1
(1 + λ)

x
λ

(1+t)λ−1
λ =

∑
n≥0

Kn,6(λ, x)
tn

n!
.(1.3)

For x = 0, Kn,5(λ) = Kn,5(λ, 0) and Kn,6(λ) = Kn,6(λ, 0) are called the Korobov
numbers of the fifth kind and of the sixth kind, respectively. We observe that

lim
λ→0

λt

(1 + t)λ − 1
(1 + t)x = lim

λ→0

t

log(1 + t)
(1 + λ)

x
λ

(1+t)λ−1
λ

= lim
λ→0

λt

(1 + t)λ − 1
(1 + λ)

x
λ

(1+t)λ−1
λ =

t

log(1 + t)
(1 + t)x,

which implies that limλ→0Kn(λ, x) = limλ→0Kn,5(λ, x) = limλ→0Kn,6(λ, x) =
bn(x).
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It is immediate to see that Kn,5(λ, x) and Kn,6(λ, x) are Sheffer sequences (see

[17, 18]) for the respective pairs
(

log(1+f(t))
f(t) , f(t)

)
and

(
λt

log(1+λ)f(t) , f(t)
)

, where

f(t) =

(
1 +

λ2t

log(1 + λ)

)1/λ

− 1.

Note that f̄(t) = log(1+λ)
λ

(1+t)λ−1
λ . According the notation of [17, 18], we have

Kn,5(λ, x) ∼
(

log(1 + f(t))

f(t)
, f(t)

)
, Kn,6(λ, x) ∼

(
λt

log(1 + λ)f(t)
, f(t)

)
.(1.4)

In this paper, we will use umbral calculus in order to study some properties,
explicit formulas, recurrence relations and identities about the Korobov polynomials
of the fifth kind and of the sixth kind. Also, we present connections between our
polynomials and several known families of polynomials.

2. Explicit Expressions

In this section we present several explicit formulas for the Korobov polynomials
of the fifth kind and of the sixth kind, namely Kn,5(λ, x) and Kn,6(λ, x). To do
so, we recall that the degenerate Stirling numbers of the first kind S1(`, k|λ) via the
generating function (see [9])

((1 + t)λ − 1)k

k!λk
=
∑
`≥k

S1(`, k|λ)
t`

`!
.(2.1)

Theorem 2.1. For all n ≥ 0,

Kn,5(λ, x) =

n∑
k=0

n∑
`=k

(
n

`

)
logk(1 + λ)

λk
S1(`, k|λ)bn−`x

k,

Kn,6(λ, x) =

n∑
k=0

n∑
`=k

(
n

`

)
logk(1 + λ)

λk
S1(`, k|λ)Kn−`(λ)xk.

Proof. We proceed the proof by using the conjugation representation for Sheffer
sequences (see [17, 18]): sn(x) =

∑n
k=0

1
k! 〈g(f̄(t))−1f̄(t)k|xn〉xk, for any sn(x) ∼

(g(t), f(t)). Thus, by (1.4), we have

Kn,5(λ, x) =

n∑
k=0

1

k!

〈
t

log(1 + t)

logk(1 + λ)((1 + t)λ − 1)k

λ2k
|xn
〉
xk

=

n∑
k=0

logk(1 + λ)

λk

〈
t

log(1 + t)

((1 + t)λ − 1)k

k!λk
|xn
〉
xk,
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which, by (1.1) and (2.1), implies

Kn,5(λ, x) =

n∑
k=0

logk(1 + λ)

λk

〈
t

log(1 + t)
|
∑
`≥k

S1(`, k|λ)
t`

`!
xn

〉
xk

=

n∑
k=0

n∑
`=k

(
n

`

)
logk(1 + λ)

λk
S1(`, k|λ)

〈
t

log(1 + t)
|xn−`

〉
xk

=

n∑
k=0

n∑
`=k

(
n

`

)
logk(1 + λ)

λk
S1(`, k|λ)bn−`x

k.

By similar techniques, we obtain the explicit expression for Kn,6(λ, x). 2

In the next theorem, we express our polynomials in terms of degenerate falling
factorial polynomials (x)n,λ, which are defined by the generating function

(1 + λ)
x
λ

(1+t)λ−1
λ =

∑
n≥0

(x)n,λ
tn

n!
.(2.2)

Theorem 2.2. For all n ≥ 0,

Kn,5(λ, x) =

n∑
m=0

(
n

m

)
bn−m(x)m,λ,

Kn,6(λ, x) =

n∑
m=0

(
n

m

)
Kn−m(λ)(x)m,λ.

Proof. Let us prove only the first expression (the second expression can be obtained
by using very similar techniques). By (1.2), we have

Kn,5(λ, y) =

〈
t

log(1 + t)
(1 + λ)

y((1+t)λ−1)

λ2 |xn
〉
,

which, by (2.2), implies

Kn,5(λ, y) =

〈
t

log(1 + t)
|
∑
m≥0

(y)m,λ
tm

m!
xn

〉
.

Thus, by (1.1), we obtain

Kn,5(λ, y) =

n∑
m=0

(
n

m

)
(y)m,λ

〈
t

log(1 + t)
|xn−m

〉
=

n∑
m=0

(
n

m

)
(y)m,λbn−m,

which completes the proof. 2
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Theorem 2.3. For all n ≥ 0,

Kn,5(λ, x)

=

n∑
j=0

 n∑
k=j

k∑
`=0

∑̀
m=0

(−1)`−m

`!

(
`

m

)(
k

j

)
(m|λ)k−j

logj(1 + λ)

λj
S1(n, k|λ)b`

xj ,

Kn,6(λ, x)

=

n∑
j=0

 n∑
k=j

1

k + 1

(
k + 1

j

)
(1|λ)k+1−j

logj(1 + λ)

λj
S1(n, k|λ)

xj .

Proof. By (1.4) and (2.1), we have that (x)n,λ =
∑n
k=0

logk(1+λ)
λk

S1(n, k|λ)xk ∼
(1, f(t)), see [9, 16]. Thus, by (1.2), we have

log(1 + f(t))

f(t)
Kn,5(λ, x) =

n∑
k=0

logk(1 + λ)

λk
S1(n, k|λ)xk.

Therefore, by (1.1), we obtain

Kn,5(λ, x) =

n∑
k=0

logk(1 + λ)

λk
S1(n, k|λ)

f(t)

log(1 + f(t))
xk

=

n∑
k=0

k∑
`=0

logk(1 + λ)

λk
S1(n, k|λ)b`

f `(t)

`!
xk

=

n∑
k=0

k∑
`=0

∑̀
m=0

(
`

m

)
(−1)`−m

logk(1 + λ)

λk
S1(n, k|λ)

b`
`!

(
1 +

λ2t

log(1 + λ)

)m/λ
xk

=

n∑
k=0

k∑
`=0

∑̀
m=0

k∑
j=0

(
`

m

)
(−1)`−m logk(1 + λ)

λk
S1(n, k|λ)

b`
`!

(m/λ)j
j!

(
λ2t

log(1 + λ)

)j
xk

=

n∑
k=0

k∑
`=0

∑̀
m=0

k∑
j=0

(
`

m

)(
k

j

)
(−1)`−m logk−j(1 + λ)

λk−j
S1(n, k|λ)

b`
`!

(m|λ)jx
k−j

=

n∑
k=0

k∑
`=0

∑̀
m=0

k∑
j=0

(−1)`−m

`!

(
`

m

)(
k

j

)
(m|λ)k−j

logj(1 + λ)

λj
S1(n, k|λ)b`x

j ,

(2.3)

which gives the explicit expression of kn,5(λ, x). Similarly, by (1.4) and (2.1), we
have

λt

log(1 + λ)f(t)
Kn,6(λ, x) =

n∑
k=0

logk(1 + λ)

λk
S1(n, k|λ)xk.
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Therefore we obtain

Kn,6(λ, x) =

n∑
k=0

logk(1 + λ)

λk
S1(n, k|λ)

log(1 + λ)f(t)

λt
xk

=

n∑
k=0

logk+1(1 + λ)

(k + 1)λk+1
S1(n, k|λ)f(t)xk+1

=

n∑
k=0

k+1∑
j=1

logk+1(1 + λ)

(k + 1)λk+1
S1(n, k|λ)(1/λ)j

1

j!

(
λ2t

log(1 + λ)

)j
xk+1

=

n∑
k=0

k+1∑
j=1

(
k + 1

j

)
logk−j+1(1 + λ)

(k + 1)λk−j+1
S1(n, k|λ)(1|λ)jx

k−j+1

=

n∑
j=0

 n∑
k=j

1

k + 1

(
k + 1

j

)
(1|λ)k+1−j

logj(1 + λ)

λj
S1(n, k|λ)

xj ,

as claimed. 2

In next theorem, we express our polynomials Kn,5(λ, x) and Kn,6(λ, x) in terms

of degenerate Bernoulli numbers β
(n)
` (λ) of order n, which are given by the gener-

ating function tn

((1+λt)1/λ−1)n
=
∑
`≥0 β

(n)
` (λ) t

`

`! .

Theorem 2.4. For all n ≥ 1, the polynomial Kn,5(λ, x) is given by

n∑
j=0

 n∑
`=j

∑̀
k=0

k∑
m=0

(−1)k−m

k!

(
n− 1

`− 1

)(
k

m

)(
`

j

)
(m|λ)`−j

logj(1 + λ)

λj
bkβ

(n)
n−`(λ)

xj .

Proof. Note that (log(1 + λ)x/λ)n ∼ (1, λt/ log(1λ)). Thus, by (1.2), we have

log(1 + f(t))

f(t)
Kn,5(λ, x)

= x

(
λt/ log(1 + λ)

(1 + λ2t/ log(1 + λ))1/λ − 1

)n
x−1(log(1 + λ)x/λ)n

=
logn(1 + λ)

λn
x

(
s

(1 + λs)1/λ − 1

)n
|s= λt

log(1+λ)
xn−1

=
logn(1 + λ)

λn
x
∑
`≥0

β
(n)
` (λ)

1

`!

(
λt

log(1 + λ)

)`
xn−1

=

n−1∑
`=0

(
n− 1

`

)
logn−`(1 + λ)

λn−`
β

(n)
` (λ)xn−` =

n∑
`=1

(
n− 1

`− 1

)
log`(1 + λ)

λ`
β

(n)
n−`(λ)x`.
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Therefore we obtain

Kn,5(λ, x) =

n∑
`=1

(
n− 1

`− 1

)
log`(1 + λ)

λ`
β

(n)
n−`(λ)

f(t)

log(1 + f(t))
x`

=

n∑
`=0

∑̀
k=0

k∑
m=0

∑̀
j=0

(−1)k−m
(
n− 1

`− 1

)(
k

m

)(
`

j

)
(m|λ)`−j

logj(1 + λ)

λj
β

(n)
n−`(λ)

bk
k!
xj

=

n∑
j=0

 n∑
`=j

∑̀
k=0

k∑
m=0

(−1)k−m
(
n−1
`−1

)(
k
m

)(
`
j

)
k!

(m|λ)`−j
logj(1 + λ)

λj
bkβ

(n)
n−`(λ)

xj ,

which completes the proof of the expression of Kn,5(λ, x). 2

Very similar techniques, as in the proof of the pervious theorem, lead to the
expression of Kn,6(λ, x), where we leave the details for the interested reader.

Theorem 2.5. For all n ≥ 0, the polynomial Kn,6(λ, x) is given by

n∑
j=0

 n∑
`=j

1

`+ 1

(
n− 1

`− 1

)(
`+ 1

j

)
(1|λ)`+1−j

logj(1 + λ)

λj
β

(n)
n−`(λ)

xj .

3. Recurrences

In this section, we present several recurrences for the Korobov polynomials of
the fifth kind and of the sixth kind. Note that, by (1.4) and the fact that (x)n,λ ∼
(1, f(t)), we obtain Kn,d(λ, x+ y) =

∑n
j=0

(
n
j

)
Kj,d(λ, x)(y)n−j,λ, for d = 5, 6.

Proposition 3.1.
For all n ≥ 1,

Kn,5(λ, x) + nKn−1,5(λ, x)

=

n∑
m=0

(
n∑

k=m

n∑
`=k

(
n

`

)(
k

m

)
(1|λ)k−m

logm(1 + λ)

λm
S1(`, k|λ)bn−`

)
xm,

Kn,6(λ, x) + nKn−1,6(λ, x)

=

n∑
m=0

(
n∑

k=m

n∑
`=k

(
n

`

)(
k

m

)
(1|λ)k−m

logm(1 + λ)

λm
S1(`, k|λ)Kn−`(λ)

)
xm.

Proof. It is well-known that if sn(x) ∼ (g(t), f(t)), then we have f(t)sn(x) =
nsn−1(x) (see [17, 18]). Thus, by (1.4), we obtain((

1 +
λ2t

log(1 + λ)

) 1
λ

− 1

)
Kn,5(λ, x) = nKn−1,5(λ, x),
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which implies Kn,5(λ, x) + nKn−1,5(λ, x) =
(

1 + λ2t
log(1+λ)

) 1
λ

Kn,5(λ, x). Therefore,

by Theorem 2.1 we have

Kn,5(λ, x) + nKn−1,5(λ, x)

=

n∑
k=0

n∑
`=k

(
n

`

)
logk(1 + λ)

λk
S1(`, k|λ)bn−`

(
1 +

λ2t

log(1 + λ)

) 1
λ

xk

=

n∑
k=0

n∑
`=k

k∑
m=0

(
n

`

)
logk−m(1 + λ)

λk−m
S1(`, k|λ)bn−`(1|λ)m

tm

m!
xk

=

n∑
k=0

n∑
`=k

k∑
m=0

(
n

`

)(
k

m

)
logk−m(1 + λ)

λk−m
S1(`, k|λ)bn−`(1|λ)mx

k−m

=

n∑
k=0

n∑
`=k

k∑
m=0

(
n

`

)(
k

m

)
logm(1 + λ)

λm
S1(`, k|λ)bn−`(1|λ)k−mx

m

=

n∑
m=0

(
n∑

k=m

n∑
`=k

(
n

`

)(
k

m

)
(1|λ)k−m

logm(1 + λ)

λm
S1(`, k|λ)bn−`

)
xm.

By using similar techniques to the above, with replacing bn−` by Kn−`(λ), we obtain
the recurrence relation for Kn,6(λ, x). 2

In the next result we express d
dxKn,5(λ, x) and d

dxKn,6(λ, x) in terms of
Kn,5(λ, x) and Kn,6(λ, x), respectively.

Proposition 3.2. For all n ≥ 0,

d

dx
Kn,d(λ, x) =

log(1 + λ)

λ2

n−1∑
`=0

(
n

`

)
(λ)n−`K`,d(λ, x),

where d = 5, 6.

Proof. Note that d
dxsn(x) =

∑n−1
`=0

(
n
`

)
〈f̄(t)|xn−`〉s`(x) for all sn(x) ∼ (g(t), f(t)),

see [17, 18]. So, for sn(x) = Kn,d(λ, x), it remains to compute A = 〈f̄(t)|xn−`〉. By
(1.4), we have

A =
log(1 + λ)

λ2
〈
∑
j≥1

(λ)j
tj

j!
|xn−`〉 =

log(1 + λ)

λ2
(λ)n−`,

which completes the proof. 2
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Theorem 3.3. For all n ≥ 1,

Kn,5(λ, x) =
x log(1 + λ)

λ

n−1∑
`=0

(
n− 1

`

)
(λ− 1)n−1−`K`,5(λ, x)

− 1

n

n−1∑
`=0

n−∑̀
k=0

(−1)k(n)kbn−k−`

(
n− k
`

)
K`,5(λ, x)

Kn,6(λ, x) =
x log(1 + λ)

λ

n−1∑
`=0

(
n− 1

`

)
(λ− 1)n−1−`K`,6(λ, x)

− 1

n

n−1∑
`=0

n−∑̀
k=0

(
n

k

)(
n− k
`

)
(λ− 1)kKn−k−`(λ)K`,6(λ, x).

Proof. Since the similarity between Kn,5(λ, x) and Kn,6(λ, x) (see (1.2) and (1.2)),
we omit the proof of the case Kn,6(λ, x) and give only the details of the case
Kn,5(λ, x). By (1.2), we have

Kn,5(λ, y) =

〈
d

dt

(
t

log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ

)
|xn−1

〉
= A+B,

where

A =

〈
d

dt

t

log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ |xn−1

〉
and

B =

〈
t

log(1 + t)

d

dt
(1 + λ)

y
λ

(1+t)λ−1
λ |xn−1

〉
.

First, we compute the term B.

B =

〈
t

log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ

log(1 + λ)

λ
y(1 + t)λ−1|xn−1

〉
=
y log(1 + λ)

λ

〈
t

log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ |(1 + t)λ−1xn−1

〉
=
y log(1 + λ)

λ

n−1∑
`=0

(
n− 1

`

)
(λ− 1)`

〈
t

log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ |xn−1−`

〉

=
y log(1 + λ)

λ

n−1∑
`=0

(
n− 1

`

)
(λ− 1)`Kn−1−`,5(λ, y)

=
y log(1 + λ)

λ

n−1∑
`=0

(
n− 1

`

)
(λ− 1)n−1−`K`,5(λ, y).
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Now, we compute the first term A,

A =

〈
t

log(1 + t)

1 + t− t/ log(1 + t)

t(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ |xn−1

〉
=

〈
t

(1 + t) log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ |1 + t− t/ log(1 + t)

t
xn−1

〉
=

1

n

〈
t

(1 + t) log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ |(1 + t− t/ log(1 + t))xn

〉
=

1

n

〈
t

log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ |(1− t

(1 + t) log(1 + t)
)xn
〉
.

Note that 1 + t− t/ log(1 + t) has order at least one. Thus, A = 1
nKn,5(λ, y)− 1

nC,

where C =

〈
t2

log2(1+t)
(1 + λ)

y
λ

(1+t)λ−1
λ | 1

1+tx
n

〉
. By the definitions, we have

C =

n∑
k=0

(−1)k(n)k

〈
t2

log2(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ |xn−k

〉

=

n∑
k=0

n−k∑
m=0

(−1)k(n)kbm

(
n− k
m

)〈
t

log(1 + t)
(1 + λ)

y
λ

(1+t)λ−1
λ |xn−k−m

〉

=

n∑
k=0

n−k∑
m=0

(−1)k(n)kbm

(
n− k
m

)
Kn−k−m,5(λ, y)

=

n∑
k=0

n−k∑
m=0

(−1)k(n)kbn−k−m

(
n− k
m

)
Km,5(λ, y).

Hence, for all n ≥ 1,

Kn,5(λ, x) =
x log(1 + λ)

λ

n−1∑
`=0

(
n− 1

`

)
(λ− 1)n−1−`K`,5(λ, x)

+
1

n

(
Kn,5(λ, x)−

n∑
`=0

n−∑̀
k=0

(−1)k(n)kbn−k−`

(
n− k
`

)
K`,5(λ, x)

)
,

which completes the proof. 2

4. Connections with Families of Polynomials

In this section, we present some examples on the connections with families of
polynomials. To do that, we recall for any two Sheffer sequences sn(x) ∼ (g(t), f(t))
and rn(x) ∼ (h(t), `(t)), we have that sn(x) =

∑n
m=0 Cn,mrm(x), where (see [17,
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18, 11])

Cn,m =
1

m!

〈
h(f̄(t))

g(f̄(t))
(`(f̄(t)))m|xn

〉
.(4.1)

We start with the connection to Bernoulli polynomials B
(s)
n (x) of order s. Recall

that the Bernoulli polynomials B
(s)
n (x) of order s are defined by the generating

function
(

t
et−1

)s
ext =

∑
n≥0B

(s)
n (x) t

n

n! , equivalently,

B(s)
n (x) ∼

((
et − 1

t

)s
, t

)
(4.2)

(see[2, 6, 18]). In the next result, we express our polynomials in terms of Bernoulli
polynomials of order s.

Theorem 4.1. For all n ≥ 0, Kn,5(λ, x) =
∑n
k=0 Cn,mB

(s)
m (x), where

Cn,m =

n−m∑
`=0

n−`−m∑
k=0

(
n
`

)(
k+m
m

)(
k+s
s

) b`S2(k + s, s)
logk+m(1 + λ)

λk+m
S1(n− `, k +m|λ).

Proof. Let Kn,5(λ, x) =
∑n
k=0 Cn,mB

(s)
m (x). So, by (1.2) and (4.2), we have

Cn,m =
1

m!

〈
(ef̄(t) − 1)s

f̄s(t)

t

log(1 + t)
f̄m(t)|xn

〉

=
1

m!

〈
(ef̄(t) − 1)s

f̄s(t)
f̄m(t)| t

log(1 + t)
xn

〉

=
1

m!

〈
(ef̄(t) − 1)s

f̄s(t)
f̄m(t)|

∑
`≥0

b`
t`

`!
xn

〉

=
1

m!

n∑
`=0

(
n

`

)
b`

〈
s!
∑
k≥0

S2(k + s, s)
f̄k+m(t)

(k + s)!
|xn−`

〉
.

Thus,

Cn,m =
s!

m!

n−m∑
`=0

n−`−m∑
k=0

(
n

`

)
b`S2(k + s, s)

〈
f̄k+m(t)

(k + s)!
|xn−`

〉

=
s!

m!

n−m∑
`=0

n−`−m∑
k=0

(
n
`

)
b`

(k + s)!
S2(k + s, s)

logk+m(1 + λ)

λk+m

〈
((1 + t)λ − 1)k+m

λk+m
|xn−`

〉

=
s!

m!

n−m∑
`=0

n−`−m∑
k=0

(
n
`

)
b`

(k + s)!
S2(k + s, s)

logk+m(1 + λ)

λk+m
(k +m)!S1(n− `, k +m|λ),
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where S1(n, k|λ) is given in [9] as S1(n, k|λ) = 1
k! 〈

(1+t)λ−1)k

λk
|xn〉. Therefore,

Cn,m =

n−m∑
`=0

n−`−m∑
k=0

(
n
`

)(
k+m
m

)(
k+s
s

) b`S2(k + s, s)
logk+m(1 + λ)

λk+m
S1(n− `, k +m|λ),

as required. 2

Similar techniques as in the proof of the previous theorem, we can express our
polynomials Kn,6(λ, x) in terms of Bernoulli polynomials of order s (we leave the
proof for the interested reader).

Theorem 4.2. For all n ≥ 0, Kn,6(λ, x) =
∑n
k=0 Cn,mB

(s)
m (x), where

Cn,m =

n−m∑
`=0

n−`−m∑
k=0

(
n
`

)(
k+m
m

)(
k+s
s

) K`(λ)S2(k + s, s)
logk+m(1 + λ)

λk+m
S1(n− `, k +m|λ).

Similar techniques as in the proof of the previous theorem, we can express our
polynomials Kn,5(λ, x),Kn,6(λ, x) in terms of other families. Below we present two
examples, where we leave the proofs to the interested reader. In the first example,
we express our polynomials in terms of Frobenius-Euler polynomials. Note that

the Frobenius-Euler polynomials H
(s)
n (x|µ) of order s are defined by the generating

function (
1− µ
et − µ

)s
ext =

∑
n≥0

H(s)
n (x|µ)

tn

n!
, (µ 6= 1),

or equivalently, H
(s)
n (x|µ) ∼

((
et−µ
1−µ

)s
, t
)

(see [1, 12, 13]).

Theorem 4.3. For all n ≥ 0, Kn,5(λ, x) =
∑n
m=0 Cn,mH

(s)
m (x|µ) and Kn,6(λ, x) =∑n

m=0Dn,mH
(s)
m (x|µ), where

Cn,m

=

n−m∑
`=0

s∑
k=0

n−`−m∑
j=k

k!
(
j+m
m

)(
n
`

)(
s
k

)
(1− µ)k

logj+m(1 + λ)

λj+m
S1(n− `, j +m|λ)S2(j, k)b`

Dn,m

=

n−m∑
`=0

s∑
k=0

n−`−m∑
j=k

k!
(
j+m
m

)(
n
`

)(
s
k

)
(1− µ)k

logj+m(1 + λ)

λj+m
S1(n− `, j +m|λ)S2(j, k)K`(λ).

For what follows, we define the associated sequence for

1− (1 + λ2t/ log(1 + λ))−1/λ,
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namely (x)(n,λ). Thus,

(x)(n,λ) ∼ (1, 1− (1 + λ2t/ log(1 + λ))−1/λ).

Recall here that (x)n ∼ (1, et − 1), (x)(n) ∼ (1, 1− e−t),

(x)n,λ ∼ (1, (1 + λ2t/ log(1 + λ))1/λ − 1)

and (1 + λ2t/ log(1 + λ))1/λ − 1→ et − 1, as λ→ 0. Now, we ready to present our
second example.

Theorem 4.4. For all n ≥ 0, Kn,5(λ, x) =
∑n
m=0 Cn,m(x)(m,λ) and Kn,6(λ, x) =∑n

m=0Dn,m(x)(m,λ), where

Cn,m =

n∑
`=0

(−1)n−`−m
(
n

`

)(
n− `
m

)
(n− 1− `)n−`−mb`,

Dn,m =

n∑
`=0

(−1)n−`−m
(
n

`

)(
n− `
m

)
(n− 1− `)n−`−mK`(λ).
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