• Title/Summary/Keyword: umami

Search Result 150, Processing Time 0.02 seconds

Umami Characteristics and Taste Improvement Mechanism of Meat

  • Md. Jakir Hossain;AMM Nurul Alam;Eun-Yeong Lee;Young-Hwa Hwang;Seon-Tea Joo
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.515-532
    • /
    • 2024
  • Taste is one of the five senses that detect vital information about what we are eating. Comprehending taste is crucial for enhancing the flavor of foodstuffs and high-protein foods like meat. Umami has global recognition as the fifth elementary taste, alongside sweetness, sourness, saltiness, and bitterness. Umami compounds are known to enhance the sensation of recognized flavors such as salty, sweet, bitter, and others. This could end up in greater food consumption by consumption by consumers. With the rising global population, meat consumption is rising and is projected to double by 2025. It is crucial to comprehend the umami mechanism of meat and meat products, identify novel compounds, and employ laboratory methodologies to gather varied information. This knowledge will aid in the development of new consumer products. Although very limited information is available on umami taste and compounds in meat through research data. This article discusses recent advancements in umami compounds in other foodstuff as well as meat to aid in designing future research and meat product development. Moreover, another objective of this review is to learn present techniques in foodstuffs to enhance umami taste and utilize that knowledge in meat products.

Umami Taste-Yielding Food Materials on Calcium-Sensing Receptor, a Kokumi Taste Receptor (감칠맛 식품 소재가 Kokumi 맛 감지 칼슘수용체에 미치는 효과)

  • Yiseul, Kim;Eun-Young, Kim;Mee-Ra, Rhyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.6
    • /
    • pp.531-536
    • /
    • 2022
  • Umami taste-yielding foods, such as, Joseonganjang, dried anchovies, dried shiitake, dried Konbu (kelp), and Yukjeot, are widely used in the Korean cuisine as soup base. While Umami taste enhancement related to Kokumi taste substances has been proposed in human sensory studies, the potential action of Kokumi taste substances has not been explored on calcium-sensing receptors (CaSR), here referred to as Kokumi taste receptors. In this study, we investigated the effect of Umami taste-yielding foods on Kokumi taste receptors using cells expressing human CaSR. We monitored the temporal changes in intracellular Ca2+ in HEK293T cells expressing CaSR in response to aqueous extract of Joseonganjang, dried anchovies, dried shiitake, dried Konbu, and Yukjeot. Kokumi substances tested-glutathione and γ-Glu-Val-Gly- evoked intracellular Ca2+ influx in a concentration-dependent manner. A similar increment of intracellular Ca2+ influx was induced by Joseonganjang, Yukjeot, and dried anchovies, but not by dried shiitake and dried Konbu. Only Joseonganjang- and Yukjeot-evoked intracellular Ca2+ influx was significantly reduced by NPS 2143, a CaSR-specific antagonist. These data indicated that some Umami substances/Umami-yielding materials could activate CaSR, but this property was not observed for all the Umami tasting substances.

Effects of Red Pepper, Salt-Fermented Anchovy Extracts and Salt Concentration on the Tastes of Kimchi (고추, 젓갈 및 소금농도가 김치의 맛에 미치는 영향)

  • 박소희;임호수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.346-349
    • /
    • 2003
  • This study was conducted to investigate the changes in organoleptic characteristics by adding different amounts of red pepper powder, salt-fermented anchovy extracts to kimchi. The salt enhanced sourness and pungency up to 2% but suppressed sourness, pungency, sweetness and umami taste by salt of more than 2%. Red pepper powder proportionally enhanced sourness up to 3% but suppressed saltiness, sweetness and umami taste. Salt-fermented anchovy extracts enhanced saltiness and sweetness together with enhancement of umami taste, but suppressed pungency and sourness. As the result of one-way analysis of correlation with the above tastes of spices and kimchi, saltiness of NaCl had a significantly negative correlation with pungency, sourness, sweetness and umami taste, as -0.9857, -0.9878, -0.9847, -0.9076, respectively, and pungency of red pepper with sourness, sweetness, saltiness and umami taste, as -0.8353, -0.9316, -0.9020, -0.9901, respectively. This indicated that increase of pungency and saltiness of kimchi suppressed a overall taste of kimchi. In addition, umami taste had a significantly negative correlation with only pungency as -0.9823 and a significantly positive correlation with sweetness and saltiness, showing a different tendency with pungency and saltiness.

Umami taste receptor suppresses cancer cachexia by regulating skeletal muscle atrophy in vivo and in vitro

  • Sumin Lee;Yoonha Choi;Yerin Kim;Yeon Kyung Cha;Tai Hyun Park;Yuri Kim
    • Nutrition Research and Practice
    • /
    • v.18 no.4
    • /
    • pp.451-463
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: The umami taste receptor (TAS1R1/TAS1R3) is endogenously expressed in skeletal muscle and is involved in myogenesis; however, there is a lack of evidence about whether the expression of the umami taste receptor is involved in muscular diseases. This study aimed to elucidate the effects of the umami taste receptor and its mechanism on muscle wasting in cancer cachexia using in vivo and in vitro models. MATERIALS/METHODS: The Lewis lung carcinoma-induced cancer cachexia model was used in vivo and in vitro, and the expressions of umami taste receptor and muscle atrophy-related markers, muscle atrophy F-box protein, and muscle RING-finger protein-1 were analyzed. RESULTS: Results showed that TAS1R1 was significantly downregulated in vivo and in vitro under the muscle wasting condition. Moreover, overexpression of TAS1R1 in vitro in the human primary cell model protected the cells from muscle atrophy, and knockdown of TAS1R1 using siRNA exacerbated muscle atrophy. CONCLUSION: Taken together, the umami taste receptor exerts protective effects on muscle-wasting conditions by restoring dysregulated muscle atrophy in cancer cachexia. In conclusion, this result provided evidence that the umami taste receptor exerts a therapeutic anti-cancer cachexia effect by restoring muscle atrophy.

Mouse neutrophils express functional umami taste receptor T1R1/T1R3

  • Lee, NaHye;Jung, Young Su;Lee, Ha Young;Kang, NaNa;Park, Yoo Jung;Hwang, Jae Sam;Bahk, Young Yil;Koo, JaeHyung;Bae, Yoe-Sik
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.649-654
    • /
    • 2014
  • Neutrophils play an important role in the initiation of innate immunity against infection and injury. Although many different types of G-protein coupled receptors are functionally expressed in neutrophils, no reports have demonstrated functional expression of umami taste receptor in these cells. We observed that mouse neutrophils express the umami taste receptor T1R1/T1R3 through RNA sequencing and quantitative RT-PCR analysis. Stimulation of mouse neutrophils with L-alanine or L-serine, which are ligands for the umami taste receptor, elicited not only ERK or p38 MAPK phosphorylation but also chemotactic migration. Moreover, addition of L-alanine or L-serine markedly reduced the production of several cytokines including $TNF-{\alpha}$ induced by lipopoly-saccharide (LPS) through inhibition of $NF-{\kappa}B$ activity or STAT3 phosphorylation in neutrophils. Our findings demonstrate that neutrophils express the umami taste receptor, through which tastants stimulate neutrophils, resulting in chemotactic migration, and attenuation of LPS-induced inflammatory response.

Physical, chemical composition and umami compound of dried immature and mature roes of skipjack tuna (Katsuwonus pelamis)

  • Phetchthumrongchai, Thithi;Chuchird, Niti;Roytrakul, Sittiruk;Chintong, Sutasinee;Klaypradit, Wanwimol
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.7
    • /
    • pp.390-402
    • /
    • 2022
  • In this study we investigate physical and chemical characteristics of immature and mature skipjack tuna (Katsuwonus pelamis) roes in fresh and dried forms. Fresh roes were studied for histological structure and also dried by three methods: hot air drying (HD), vacuum drying (VD) and freeze drying (FD). The obtained roe powders were analysed for proximate composition, color value, fatty acid composition, amino acid profile, equivalent umami concentration (EUC) and protein pattern. Unyolked oocytes were more common in immature roes, while fully yolked oocytes were more common in mature roes. All dried tuna roes contained high content of protein and lipid (69.31%-70.55% and 11.14%-16.02%, respectively). The powders obtained by FD provided the highest lightness value (L*). The main fatty acid found in all roe powders was docosahexaenoic acid (DHA) (23.49%-27.02%). Glutamic acid, leucine, and aspartic acid were the three most abundant amino acids found in the powders (13.58-14.61, 8.06-8.42, and 7.81-8.39 g/100 g of protein, respectively). The mature roe powder obtained from HD provided the highest EUC value (73.09 g monosodium glutamate/100 g of samples). The protein band at molecular weight of 97 kDa (vitelline) represented the major protein. Therefore, dried tuna roe could be a functional ingredient source of protein and lipid rich in DHA and it also has potential to be used as taste enhancer with umami compound.

Physicochemical and Sensory Characteristics of Hydrolyzed Vegetable Protein Manufactured by Various Enzyme Reaction Order of Defatted Soybean Meal (효소 분해순서를 달리하여 제조한 탈지대두박효소 분해물의 이화학적 및 관능적 특성)

  • Shin, Myung-Gon;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1279-1284
    • /
    • 2016
  • To obtain enzyme hydrolyzed vegetable protein (EHVP) with a salty and umami taste, defatted soybean meal was treated with proteases such as Flavourzyme$^{(R)}$ (F), Neutrase$^{(R)}$ (N), Alcalase$^{(R)}$ (A), and Protamex$^{(R)}$ (P) in various reaction orders. The highest soluble solid content of EHVP was 5.60% in enzyme reaction order NAFP although there was no significant difference. Amino type nitrogen was highest in ANFP (102.76 mg%) and APNF (102.85 mg%). In the sensory descriptive analysis, salty taste was highest in PNFA (11.81), followed by NPAF (10.14), FPNA (10.00), APNF (9.80), NAFP (9.76), AFNP (9.57), APFN (9.52), and NPFA (9.50) with no significant difference among treatment. Umami taste was not significantly different among the various enzyme treatments. Bitter aftertaste was highest in AFPN (5.67) and lowest in FAPN (2.38), PNAF (2.62), and NAPF (2.48). In the principle component analysis, EHVPs of PNFA, NAFP, APFN, NPAF, FPNA, NPFA, and APNF showed a strong salty and umami taste. Therefore, the PNFA, NAFP, APFN, NPAF, FPNA, NPFA, and APNF are desirable methods for making EHVP with a salty and umami taste.

Gustation: targeting sodium and sugar reduction (당 저감 및 나트륨 저감을 위한 미각 이해)

  • Rhyu, Mee-Ra
    • Food Science and Industry
    • /
    • v.50 no.4
    • /
    • pp.12-23
    • /
    • 2017
  • Gustation, initiated by the detection of taste molecules by specific receptors expressed in taste cells, plays an essential role in food selection and consequently in overall nutrition for humans. In the past decade, a remarkable amount of knowledge of taste perception in the neurology, molecular biology, and genetics has emerged, particularly in basic tastes- sweet, bitter, sour, salt and umami. Among them, sweet, bitter and umami are recognized via the specific G-protein coupled receptors. Salt and sour are primarily mediated by apically located ion channel-type receptors. Because excessive salt or sugar consumption leads to high rates of diet-associated diseases and it comes from eating prepared or processed foods, an understanding of the underlying mechanisms in salt and sweet perception is crucial in food industry. This review will focus on recent progress of the perception of salt and sweet taste to provide basic knowledge for reducing salt and sugar consumption.

Salty taste: the paradoxical taste

  • In-Sun, Choi;Kyung-Nyun, Kim
    • International Journal of Oral Biology
    • /
    • v.47 no.4
    • /
    • pp.49-54
    • /
    • 2022
  • Taste is a basic sensation to get attracted toward nutritious foods or avoid possible harmful substances. The basic taste qualities in humans consist of sweet, bitter, umami, salty, and sour. Basically, sweet and umami tastes make food attractive, whereas bitter and sour tastes make it avoidable. Salty taste comprises basic salty and high salt taste. The basic salty taste is known as amiloride-sensitive salty taste, which is inhibited by amiloride, but the high salt taste is not sensitive to amiloride. Moreover, high salt taste can also cause avoidance behavior in human beings. Sodium, one of the most important cations in the body fluids of vertebrates, controls the volume of total body fluids and is a risk factor for cardiovascular diseases, such as hypertension. The concentration of sodium in body fluids must be under delicate control. A distinction between the salty taste and high salt taste would be a contributing mechanism to control the volume and/or osmolarity of body fluids.