• Title/Summary/Keyword: ultraviolet-A(UVA)

Search Result 64, Processing Time 0.019 seconds

Preparation of blocking ultraviolet mica composites using Nano-TiO2 (Nano-TiO2를 이용한 자외선차단 마이카 복합체 제조)

  • Yun, Ki Hoon;Lee, Jaebok;Moon, Young-Jin;Go, Hee Kyoung;Lee, Yi;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1197-1205
    • /
    • 2018
  • UV protection cosmetics belong to functional cosmetics and contain organic or inorganic UV blocking pigments. The inorganic UV blocking pigments are mainly zinc oxide and titanium dioxide. It is known that inorganic UV blocking pigment has a diameter of 60 to 100 nm and has good blocking ability of UVA and UVB. Also, it has high inactivity against sunlight including UV and is excellent in safety. In addition, it is not absorbed or accumulated on the skin like organic pigments and does not cause skin irritation or allergy. In this study, mica, a plate-shaped inorganic pigment, nanosized titanium dioxide, an UV blocking material, and hydrophobic silica were surface-treated with surfactants. And then, titanium dioxide nanoparticles and silica were physically adsorbed on the mica by non-chemical mutual attraction due to differences in charge. Thereafter, the mica complex was surface-treated with silane to prepare a hydrophobic UV blocking pigment complex. The plate-shaped UV blocking composite improves the cohesiveness of a general nanoparticle material titanium dioxide, enhances UV blocking effect due to uniform dispersion, and can greatly improve dispersion stability in cosmetic formulations by surface treatment with hydrophobic property. The surface charge of the pigment was evaluated by zeta potential. The properties of the UV blocking pigment complex were evaluated by FE-SEM, XRD, FT-IR and UV-VIS.

Fabrication of High Density and High Uniformity Irradiation Light Source for Exposure Curing System Using 365 nm and 385 nm Wavelength SMD LED and High Transmittance Silicone Resin TIR Bar Type Lens (365 nm 및 385 nm SMD LED와 TIR 바형 렌즈를 이용하는 고밀도 고균일성 특성의 경화용 광원모듈 제작 )

  • Pil Hong Jeong;Beom Jin Kim;Yeong Jin Kim;Dong Gyu Jeon;Hyo Min Kim;Jae Hyeon Kim;Hyeong Min Kim;Gyu Seong Lee;Kawan Anil;Eung Ryul Park;Soon Jae Yu;Min Jun Ann;Do Won Hwang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.394-399
    • /
    • 2024
  • An irradiator is developed using two UVA wavelength ranges of SMD LEDs as a curing light source. This module has dimensions of 545×111×300 mm3 and is equipped with a TIR bar-shaped lens made of PDMS silicone resin. The developed irradiator offers high uniformity, with 89% in the centerline of the horizontal axis direction, for two different wavelength ranges of 365 nm and 385 nm. The radiation intensity from the light source module shows highly directional characteristics, and the irradiator provides a maximum irradiance of 1,634 mW/cm2 at a working distance of 50 mm. During the initial 5 minutes of operation, the irradiance experiences a rapid decrease. However, this issue is addressed by optimizing the LED's current reduction characteristics and managing the Transistor's temperature rise in the constant current circuit. After continuous operation for approximately 60 minutes. The highest temperature, near the central part of the irradiating surface, reaches 69.7℃, while the lowest temperature, near the edges, is 41.1℃.

Skin Care Effects of Green Tea (녹차의 피부보호효과)

  • Lee, Byeong-Gon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.311-321
    • /
    • 2005
  • Tea (Camellia sinenis) is a popular beverage consumed worldwide. Since green tea, mainly consumed in Asia, has various biological activities, green tea components became one of the most favorite candidates as a functional materials for cosmetics and functional foods. The biological activities of green tea for skin cue have been ranged from protection of epidermal cells to the stimulation of extracellular matrix (ECM) biosynthesis. Green tea polyphenols (GTPs), which are active ingredients of green tea, possess anti-inflammatory, anti-carcinogenic and immune potentiation properties as well as antioxidant. They also modulate intracellular signal transduction pathways. GTPs decrease ultraviolet (UV)-induced oxidative stress, thus suppress mitogen-activated protein kinase (MAPK) pathway and apoptosis in keratinocytes. In addition, GTPs prevent the Induction of inflammatory mediators, such as cyclooxygenase-2 (COX-2), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) by tumor necrosis factor alpha $(TNF{\alpha})$ or chemical treatment in keratinocytes. GTPs treatment protects from chemical-or UV-induced skin tumor incidence in animal experiment. Besides, GTPs stimulate keratinocyte differentiation and proliferation of normal and aged epidermal cells, resectively, and suppress matrix metalloproteinases (MMPs) release. According to the progress of formulation study, green tea components will be guaranteed materials for the more effective skin cue products.

Photoalteration in Biodegradability and Chemical Compositions of Algae- derived Dissolved Organic Matter (자외선에 의한 조류기원 용존유기물의 생분해도 및 화학조성변환.)

  • Imai, Akio;Matsushige, Kazuo;Nagai, Takashi;Kim, Yong-Hwan;Kim, Bom-Chul;Choi, Kwang-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.235-241
    • /
    • 2003
  • The effect of ultraviolet (UV) radiation on the characteristics of algae-derived dissolved organic matter (DOM) was examined by comparing the biodegradability and DOM fraction distribution of algal DOM before and after UV exposure. Algal DOM from two axenic cultures of Microcystis aeruginosa and Oscillatoria agardhii were irradiated for 24 h at a UV intensity of 42 W/$m^2$. A complete degradation of algal DOM during the UV exposure did not occur, remaining at constant concentrations of dissolved organic carbon(DOC). After UV exposure, however, microbial degradations were reduced by 17% in M. aeruginosa and 53% in O. agardhii, respectively, and decomposition rates also were two times lower in UV exposed algal DOM. In addition, the chemical compositions of algal DOM altered substantially after UV radiation exposure. The proportions of hydrophilic bases (HiB; protein-like DOM) decreased considerably in both algal DOM sources after UV exposure (16.8% and 20.0% of DOM, respectively), whereas those of hydrophilic acids (HiA; carboxylic acids-like DOM) increased as much as the decrease of the HiB fraction. Capillary ion electrophoresis (CE) analysis showed that several carboxylic acids increased significantly after UV exposure, further confirming an increase in HiA fractions. The results of this study clearly indicate that algal DOM can be changed in its chemical composition as well as biodegradability without complete degradation by UV radiation.