• Title/Summary/Keyword: ultraviolet photoreaction

Search Result 7, Processing Time 0.026 seconds

Photoreactions of the Skin (피부의 광반응)

  • Bae Sung-Soo;Park Rae-Joon;Kim Jin-Sang;Kwon Hyuk-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.4 no.1
    • /
    • pp.13-18
    • /
    • 1992
  • Most of the electromagnetic agents used in physical therapy rely for their effects on tissue heating and photoreaction of the body. Infrared and untraviolet light on the other hand, owns its place in medicine because it produces direct photochemial reaction when it interacts with the body. This study was carried out to investigate and review for photoreaction of the akin. The results were an follows. 1. The effects of the infrared are heat production, increasing metabolism, increasing circulation, vasodilatation and pigmentation. 2. Directed photoreactions are divided into acute reaction and chronic reaction, and the acute reaction makes pigmentation from $290\~320nm$ of ultraviolet ray. 3. Ultraviolet ray formated pigmentations, which are melanoblasts excited from ultraviolet ray and received chemical stimulation, that make melanin granule. 4. If exposured with long duration, at ultraviolet ray, it makes skin thickening and epithelioma. 5. Indirected photoreaction is made by existenced hypersensitivity of photoreaction or lack of photodefence structure. 6. The phototoxic reactions are synthesized by chemical reaction of excitement from ultraviolet ray also this time analysis, synthesis and polymerization from energy of a circumferenced substance. 7. Sunscreen substances are P-amino benzoic acid and oxidate titan.

  • PDF

Epitaxial Growth of BSCCO Type Structure in Atomic Layer by Layer Deposition

  • Yang, Sung-Ho;Park, Yong-Pil;Jang, Kyung-Uk;Oh, Geum-Gon;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.97-100
    • /
    • 2000
  • Si$_2$Sr$_2$CuO$\sub$x/(Bi(2201)) thin films are fabricated by atomic layer by layer deposition using ion beam sputtering(IBS) method. During the deposition, 10 %-ozone/oxygen mixture gas of typical 5.0 ${\times}$ 10$\^$-5/ Torr is applied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then c-axis oriented Bi(2201) is grown.

  • PDF

Epitaxial Growth of BSCCO Type Structure in Atomic Layer by Layer Deposition

  • Yang, Sung-Ho;Park, Yong-Pil;Jang, Kyung-Uk;Oh, Geum-Gon;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.97-100
    • /
    • 2000
  • Bi$_2$Sr$_2$CuO$\sub$x/(Bi(2201)) thin films are fabricated by atomic layer by layer deposition using ion beam sputtering(IBS) method. During the deposition, 10 %-ozone/oxygen mixture gas of typical 5.0 ${\times}$ 10$\^$-5/. Torr is applied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then c-axis oriented Bi(2201) is grown.

  • PDF

Development of Polymer Coating Method for Stable Stent Coating Using Chemical Bond Between Metal Surface and Polymer (안정된 스텐트 코팅막을 형성하기 위해 금속표면과 고분자 사이의 화학적 결합을 이용한 고분자 코팅법 개발)

  • Nam, Dae-Sik;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • To produce stable polymer coating layer using the interaction between metal stent and polymer layer, Ahx-HSAB was synthesized by coupling 6-aminoheanoic acid (Ahx) with N-Hydroxy succinimidyl 4-azidobenzonate (HSAB) containing photo reactive group. Then, Ahx-HSAB was applied to self·assembled monolayer (SAM) on $TiO_2$-coated surface, since one end of Ahx-HSAB was carboxyl acid which was known to be able to interact with $TiO_2$ surface. That SAM layer was incubated in 1% polycaprolacton (PCL) solution and photoreacted by ultraviolet light (254 nm) to produce the chemical bond between SAM and polymer layer, followed by PCL polymer coating ({\sim}5\;{\mu}m$) by the method of spray coating. The surface change was investigated by measuring of contact angle of the surface. The contact angle values of stainless steel (SS) surface, $TiO_2$-coated surface, SAM layer by Ahx-HSAB, photoreacted surface with PCL and PCL layer by spray coating were 70.48${\pm}$1.89, 38.57${\pm}$3.31, 60.14${\pm}$2.21, 54.91${\pm}$2.70 and 56.47${\pm}$2.12, respectively. The stability of polymer layers was tested by incubation of PCL-coated plates in 0.1M PBS buffer (pH 7.4, 0.05%, Tween 80) with vigorous shaking (200 rpm). While the poiymer layer prepared by these processes showed the intact surface morphology over 3 days, the polymer layers prepared by spray coating of PCL onto SS plate (control 1) and $TiO_2$-coated SS plate (control 2) were Peeled off in 3 days. Thus, the polymer coating method using SAM and photoreaction seems to be a effective method to obtain the stable polymer layer onto SS surface.

Preparation and Characterization of the Photocatalysts Transition Metal-Doped Ti-SCM (전이금속을 담지한 Ti-SCM 제조 및 특성연구)

  • Jung, Won-Chae;Hong, Ji-Sook;Suh, Jeong-Kwon;Suh, Dong-Hack
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.445-451
    • /
    • 2010
  • $TiO_2$ shows considerably efficient photoreaction activity under the ultraviolet range but it has disadvantage that there is no activity in the visible light range. In this study, it was tried to find a solution for the problem of this kind of photocatalyst by utilizing transition metal, which can show electronic transition with $TiO_2$ in the visible light area. Photocatalyst was prepared, which can have photocatalytic activity in the wide wavelength range, not only ultraviolet region but also visible light area and prevent the combination of electron and hole hindering the photoreaction. For this purpose, by using the ion exchange method, $TiO_2$ precursor and transition metal precursor were dipped into H typed strong acid ion-exchange resin. And two kind photocatalysts (Ti-M-SCM) in which transition metal and titanium dioxide coexist through the carbonization/activation process was prepared. Moreover, photolytic reaction under the wavelength 254 nm and 365 nm was performed for humic acid (HA) in the continuous reactor in order to estimate the efficiency of produced Ti-M-SCM.

Characterizations of Photo-Oxidative Abilities of Nanostructured TiO2 Powders Prepared with Additions of Various Metal-Chlorides during Homogeneous Precipitation (균일침전시 여러 가지 금속염화물들을 첨가하여 제조된 TiO2 나노 분말들의 광산화 능력 평가)

  • Hwang D. S;Lee N. H;Lee H. G;Kim S. J
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.293-299
    • /
    • 2004
  • Transition metal ions doped $TiO_2$ nanostructured powders were prepared with simply heating aqueous $TiOCl_2$ solutions, contained various metal ions (Ni, Al, Fe, Zr, and Nb) of 1.47 mol% added as metal-chlorides, at $100^{\circ}C$ for 4 hrs by homogeneous precipitation process under suppressing conditions of water vaporization. The characterizations for prepared $TiO_2$ powders were carried out to observe doping of metal ions, their concentrations and microstructures using XRD, UV-VIS (DRS), XPS, SEM, TEM and ICP. Also, photo-oxidative abilities were evaluated by decomposition of 4-chlorophenol (4CP) under ultraviolet light irradiations. No secondary oxide phases were formed in all the $VTiO_2$ powders, showing doping with various transition metal ions. When adding ions ($Ni^{2+}$ or$ Al^{3+ }$ and $Zr^{4+}$ ) having valance states or ionic radii greatly different from those of $Ti^{4+}$ , the $TiO_2$ powders of mixed anatase and rutile phases were formed, whereas in the case of additions of $^Fe{3+ }$ and $Nb^{ 5+}$ as well as no addition of metal ion the powders with pure rutile phase alone were formed. Among the prepared $TiO_2$ powders, Ni$^{2+}$ doped $TiO_2$ powders, containing a small amount of anatase phase, showed excellent photo-oxidative ability in 4CP decomposition because of relative decreases in electron-hole recombination and poisoning of $TiO_2$ surface during the photoreaction.n.

Synthesis of Ag-doped black ZnO nano-catalysts for the utilization of visible-light (가시광선 활용을 위한 Ag 도핑 흑색 ZnO 나노 광촉매 합성)

  • Ui-Jun Kim;Hye-Min Kim;Seung-Hyo Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.208-218
    • /
    • 2023
  • Photocatalysts are advanced materials which accelerate the photoreaction by providing ordinary reactions with other pathways. The catalysts have various advantages, such as low-cost, low operating temperature and pressure, and long-term use. They are applied to environmental and energy field, including the air and water purification, water splitting for hydrogen production, sterilization and self-cleaning surfaces. However, commercial photocatalysts only absorb ultraviolet light between 100 and 400 nm of wavelength which comprises only 5% in sunlight due to the wide band gap. In addition, rapid recombination of electron-hole pairs reduces the photocatalytic performance. Recently, studies on blackening photocatalysts by laser, thermal, and plasma treatments have been conducted to enhance the absorption of visible light and photocatalytic activity. The disordered structures could yield mid-gap states and vacancies could cause charge carrier trapping. Herein, liquid phase plasma (LPP) is adopted to synthesize Ag-doped black ZnO for the utilization of visible-light. The physical and chemical characteristics of the synthesized photocatalysts are analyzed by SEM/EDS, XRD, XPS and the optical properties of them are investigated using UV/Vis DRS and PL analyses. Lastly, the photocatalytic activity was evaluated using methylene blue as a pollutant.