• Title/Summary/Keyword: ultrasonic pulse

Search Result 522, Processing Time 0.027 seconds

A Study on the Ultrasonic Technique for Measurement of Vibration in Journal Bearing (저어널 베어링의 진동 계측을 위한 초음파 응용 기술에 관한 연구)

  • 김노유
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.476-481
    • /
    • 1999
  • This paper describes a new technique for measurement of the displacement less than one-quarter of the wavelength of ultrasonic wave using ultrasonic pulse-echo method. The technique determines the displacement of a journal bearing from the amplitudes of the total reflected waves from the surface of journal inside the bearing. Vibration of journal bearing can be measured without using a very high frequency ultrasonic transduce over 100MHz which must be used in the conventional techniques for the precision measurement of a small displacement. The method also requires no inversion process to extract the thickness from the waveforms of the reflected waves, so that it makes possible on-line measurement of the vibration of journal bearing.

  • PDF

A Study on Fabrication and Characteristics of PVDF Ultrasonic Transducer (PVDF 초음파 변환기의 제작과 특성에 관한 연구)

  • Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.33-37
    • /
    • 2000
  • The authors fabricated ultrasonic transducer with PVDF[poly(vinylidene fluoride)] piezoelectric polymer film. When impulse waves were applied to the PVDF ultrasonic transducer, the dependence of the response properties on the backing material with copper was investigated through not only theoretical calculations using Mason's equivalent circuit but also experimental measurements. The experimental pulse response properties agree with those of the theoretical calculations and the pulses were shorter than those for a PZT transducer. If such short-pulse properties are used in an medical ultrasonic image diagnosis apparatus, the resolution of the apparatus will be improved. When the insertion loss was calculated theoretically to the PVDF ultrasonic transducer, the frequency characteristics of its showed wideband frequency.

  • PDF

Quantitative Nondestructive Evaluation of Bonded Joints utilizing Pulse-Echo Ultrasonic Test (펄스-에코법을 이용한 접착접합 시험편의 정량적 비파괴 평가)

  • Oh, Seung-Kyu;Hwang, Young-Taek;Lee, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.157-164
    • /
    • 2003
  • The pulse-echo method is one of the most widely used ultrasonic techniques for application of nondestructive evaluation. Particularly, quantitative nondestructive evaluation of defects has been considered more important to assure the reliability and the safety of structure. Frequency energy in adhesive joints is based on the ultrasonic wave analysis. The attenuation coefficient upon wave amplitude and the frequency energy that is expressed in the term of wave pressure amplitude were utilized for the primary wave experiment. By means of a control experiment, it was confirmed that the variation of the frequency energy in adhesive joints depends on transition by stress variation. In this paper, the ultrasonic characteristics were measured for single lap joint and Double Cantilever Beam specimen with different fracture modes that was subjected to stress. Consequently, the data that was obtained from the adhesive specimen was analytically compared to the fracture mechanics parameter

Liquid Film Thickness Measurement by An Ultrasonic Pulse Echo Method (초음파 Pulse-echo 방법에 의한 액체막 두께 측정)

  • Jong Ryul Park;Jong-Ryul Park;Se Kyung Lee
    • Nuclear Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.25-33
    • /
    • 1985
  • The main purpose of this work is to investigate the effects of the wall thickness, the ultrasonic frequency, and the acoustic impedance of wall material on the liquid-film thickness measurement by an ultrasonic pulse echo method. A series of liquid-film thickness measurements in a horizontal air-water stratified system was performed employing a plate-type and a tube-type test sections. Measurements were repeated changing (1) the wall thickness of the test section and (2) the transducer frequency. Also, in an effort to improve the accuracy of the measurement and to exam me the effect of acoustic impedance of wall material on the measurement by an ultrasonic technique, two different stand-off rods, one made of stainless steel and the other polyacrylate, were used in the liquid-film thickness measurement. These experimental results are discussed and compared with the actual film thicknesses.

  • PDF

An Ultrasonic Positioning System Using Zynq SoC (Zynq-SoC를 이용한 초음파 위치추적 시스템)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1250-1256
    • /
    • 2017
  • In this research, a high-performance ultrasonic positioning system is proposed to track the positions of an indoor mobile object. Composed of an ultrasonic sender (mobile object) and a receiver (anchor), the system employs three ultrasonic time-off-flights (TOFs) and trilateration to estimate the positions of the object with an accuracy of sub-centimeter. On the other hand, because ultrasonic waves are interfered by temperature, wind and various obstacles obstructing the propagation while propagating in air, ultrasonic pulse debounce technique and Kalman filter were applied to TOF and position calculation, respectively, to compensate for the interference and to obtain more accurate moving object position. To perform tasks in real time, ultrasonic signals are processed full-digitally with a Zynq SoC, and as a software design tool, Vivado IDE(integrated design environment) is used to design the whole signal processing system in hierarchical block diagrams. And, a hardware/software co-design is implemented, where the digital circuit portion is designed in the Zynq's fpga and the software portion is c-coded in the Zynq's processors by using the baremetal multiprocessing scheme in which the c-codes are distributed to dual-core processors, cpu0 and cpu1. To verify the usefulness of the proposed system, experiments were performed and the results were analyzed, and it was confirmed that the moving object could be tracked with accuracy of sub-cm.

Optimal Design and Analysis of a Medical Imaging Ultrasonic Array Sensor (의료 영상진단용 초음파 어레이 센서의 최적설계 및 특성해석)

  • Kim, Hoe-Yong;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.263-270
    • /
    • 2008
  • The performance of an ultrasonic array sensor is determined by the properties of constituent materials and the effects of many structural parameters. In this study, with the finite element method, variation of the performances of an ultrasonic array sensor was analyzed in relation to its structural variables. Based on the analysis result, the structure of the ultrasonic array sensor was optimized to provide the highest sensitivity while satisfying such requirements as fractional bandwidth, center frequency and -20 dB pulse length. The optimization was carried out with the SQP-PD method for a target function composed of the ultrasonic array sensor performance. The optimized ultrasonic array sensor satisfied all the required specifications to be applicable to medical imaging diagnosis. The design technology in this paper can be utilized for other ultrasonic array sensors of a similar structure.

Study on the Compressive Strength Equation using Ultrasonic Pulse Velocity with Concrete Exposed to High Temperature (고온을 받은 콘크리트 적용을 위한 초음파 속도를 이용한 강도추정식 검토)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Bo-Kyeong;Lee, Young-Wook
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.139-140
    • /
    • 2015
  • The purpose of this study was to evaluate existing compressive strength equation with concrete exposed to high temperature by ultrasonic pulse velocity. As the result, original compressive strength equation is proper only for compressive strength of normal concrete. Therefore, an accumulation of experimental database of concrete exposed to high temperature is necessary for proposal of new compressive strength equation.

  • PDF

Numerical modelling and finite element analysis of stress wave propagation for ultrasonic pulse velocity testing of concrete

  • Yaman, Ismail Ozgur;Akbay, Zekai;Aktan, Haluk
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.423-437
    • /
    • 2006
  • Stress wave propagation through concrete is simulated by finite element analysis. The concrete medium is modeled as a homogeneous material with smeared properties to investigate and establish the suitable finite element analysis method (explicit versus implicit) and analysis parameters (element size, and solution time increment) also suitable for rigorous investigation. In the next step, finite element analysis model of the medium is developed using a digital image processing technique, which distinguishes the mortar and aggregate phases of concrete. The mortar and aggregate phase topologies are, then, directly mapped to the finite element mesh to form a heterogeneous concrete model. The heterogeneous concrete model is then used to simulate wave propagation. The veracity of the model is demonstrated by evaluating the intrinsic parameters of nondestructive ultrasonic pulse velocity testing of concrete. Quantitative relationships between aggregate size and testing frequency for nondestructive testing are presented.

Freezing and Thawing Properties of Polypropylene Fiber Reinforced Eco-concrete (폴리프로필렌 섬유보강 에코콘크리트의 동결융해 특성)

  • Sung Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.59-66
    • /
    • 2006
  • This study is performed to evaluate freezing and thawing properties of polypropylene fiber reinforced eco-concrete using soil, natural coarse aggregate, soil compound and polypropylene fiber. The mass loss ratio is decreased with increasing the content of natural coarse aggregate and soil compound, but it is increased with increasing the content of polypropylene fiber. The ultrasonic pulse velocity, dynamic modulus of elasticity and durability factor are increased with increasing the content of natural coarse aggregate and soil compound, but it is decreased with increasing the content of polypropylene fiber. The mass loss ratio, ultrasonic pulse velocity, dynamic modulus of elasticity and durability factor are $1.49{\sim}3.32%,\;1,870{\sim}2,465\;m/s,\;77X10^2{\sim}225X10^2\;MPa\;and\;84.6{\sim}92.8$ after freezing and thawing 300 cycles, respectively. These eco-concrete can be used for environment-friendly side walk and farm road.

Internal Damage Assessment of Concrete for Various Load Histories using Ultrasonic Pulse Velocity Method (초음파속도법을 이용한 하중이력상태에 따른 콘크리트 내부결함 평가)

  • Kim, Jong-Ho;Kim, Jee-Sang;Park, Jong-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.347-348
    • /
    • 2010
  • Ultrasonic pulse velocity method is investigated to evaluate assessment on concrete properties without loss of structural function. In addition, a relatively simple, and economical, and high adaptability, and so the need is increasing. In this study, the load of the concrete historical conditions based on ultrasonic pulse velocity measurements to analyze the results of the internal defects of concrete was evaluated.

  • PDF