• Title/Summary/Keyword: ultrasonic attenuation

Search Result 224, Processing Time 0.022 seconds

A Study of the Couplant Effects on Contact Ultrasonic Testing

  • Kim, Young-H.;Song, Sung-Jin;Lee, Sung-Sik;Lee, Jeong-Ki;Hong, Soon-Shin;Eom, Heung-Seop
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.621-626
    • /
    • 2002
  • The amplitude of a back-wall echo depends on the reflection coefficient of the interface between a transducer and a test material when using contact pulse-echo ultrasonic testing. A couplant is used to transmit ultrasonic energy across the interface, but has an influence on the amplitude of the pulse-echo signal. To investigate the couplant effect on pulse-echo ultrasonic testing, back-wall echoes are measured by using various couplants made of water and glycerine in a carbon and austenitic stainless steel specimens. The amplitude of the first back-wall echo and the apparent attenuation coefficient increases with the acoustic impedance of the couplant. The couplant having a higher value of the transmission coefficient is more effective for flaw detection. The reflection coefficient should be known in order to measure the attenuation coefficient of the test material.

A Study on the Correction of Beam Pattern for the Ultrasonic Attenuation Coefficient Estimation (초음파 감쇠계수 주정에 있어서 빔 형태의 보정에 관한 연구)

  • Kim, Gi-Uk;Choe, Heung-Ho;Hong, Seung-Hong
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 1987
  • In estimating the freguency-dependent attenuation coefficient, we analyzed the range-dependent ultrasonic beam and proposed the method of calculating the experimental equation of beam pattern in order to reduce the error on the influence of beam pattern. These experimental equations are divided into the spectral centroid and the spec ural standard deviation slope according to axial propagation length. These are repnesented by the first-order equation in the near field of the beam and the second- order eqLlatlon In the far field. In order to prove the validity of this method, the attenuation coefficients of the non-corrected ease and the corrected case are compared. Using the reflected signal from acryle plate, the attenuation coefficients were estimated by the spectral shift method ann the spectral difference method. The result shows attenuation coeffi talents after correction are better than attenuation coefficients before correction. And this method can be applied In vivo measurement.

  • PDF

Analysis of Ultrasonic Attenuation for Improving Ultrasonic Burning Rates Measurement of Solid Propellants (고체추진제 초음파 연소속도 측정 정밀도 향상을 위한 초음파 감쇠 분석)

  • Oh, Hyun-Taek;Song, Sung-Jin;Kim, Hak-Joon;Ko, Sun-Feel;Kang, To;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.195-198
    • /
    • 2008
  • Ultrasonic method is applied for measuring burning rates of the solid propellants, since it can measure burning rates as a function of pressure in a single test performed. However, to replace the stand burner method by the ultrasonic method, it is necessary to verify of its accuracy and reliability. In this study, we investigated the performance of the ultrasonic method for burning rate measurements by comparison to the strand burner results. Furthermore, we investigated the relation between the attenuations of solid propellants and data scattering in the measured burning rates.

  • PDF

Aging Degradation Assessment of Materials by Ultrasonic Characterization (초음파 특성을 이용한 경년열화 평가)

  • Park, Un-Su;Park, Ik-Keun;Kim, Duck-Hee;Ahn, Hyung-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.149-154
    • /
    • 2002
  • An attempt was made to evaluate the changes of microstructures and mechanical properties with increasing aging time in 2.25Cr-1Mo steel. In this study, it was verified the feasibility of the evaluation for degraded 2.25Cr-1Mo steel by isothermal heat treatment at $630^{\circ}C$ up to 1,000 hours using surface SH wave and investigated the change of attenuation coefficient and propagation time. Attenuation coefficient had a tendency to increase according to degradation and propagation time drastically in the beginning of deterioration. A good correlation between ultrasonic attenuation coefficient and hardness was found, which made sure that attenuation coefficient is an potential parameter for evaluation of aging degradation. In addition, it has verified experimentally the frequency dependence of ultrasonic group velocity and attenuation coefficient using wavelet transform.

Fracture Behavior Analysis in CFRP Specimens by Acoustic Emission and Ultrasonic Test (음향방출 및 초음파시험을 이용한 CFRP 시험편의 파괴 거동 해석)

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.251-260
    • /
    • 2001
  • Damage Profess of CFRP laminates under monotonic tensile test was characterized by the correlation between Acoustic Emission(AE) and Ultrasonic Test(UT). The amplitude distribution of AE signal from a specimens is an aid to the determination of the extent of the different fracture mechanism such as matrix crack, debonding, fiber pullout and fiber fracture as load is increased. In addtion, the characteristics of ultrasonic amplitude attenuation are useful lot analysis of the different type of fracture mechanism. Different orientation of carbon fiber reinforced plastic specimens were used to investigate the AE amplitude range and ultrasonic amplitude attenuation. Finally, loading-unloading tests were carried out to check Felicity effect. During the tests, ultrasonic amplitude attenuation was investigated at the same time and compared with AE parameters. The result showed that two parameters of both AE and UT could be effectively used for analysis of fracture mechanism in CFRP laminates.

  • PDF

A Study on the High Frequency Ultrasonic Attenuation Characterization in Artificially Aging Degraded 2.25Cr-1Mo Steel (2.25Cr-1Mo 강 인공 열화재의 고주파수 초음파 감쇠특성에 관한 연구)

  • Park, Ik-Keun;Park, Un-Su;Kim, Chung-Seok;Kim, Hyun-Mook;Kwun, Sook-In;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.439-445
    • /
    • 2001
  • The destructive method is reliable and widely used lot the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. Ultrasonic nondestructive evaluation technique has been reported good to attain efficiency of measurement, high sensitivity of measurement, and rapidity and reliability of result interpretation. In this study, it was verified experimentally the feasibility of the evaluation of degraded 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at $630^{\circ}C$ by high frequency longitudinal wave method investigating the change of attenuation coefficient by FFT analysis and wavelet transform. Because of carbide precipitation increase and spheroidization near grain boundary of microstructure to aging degradation, attenuation coefficient had a tendency to increase as degradation proceeded. It was identified possibly to evaluate degradation using the characteristics of high-frequency ultrasonics. Frequency dependence of ultrasonic attenuation coefficient to aging degradation appeared large, which made sure that attenuation coefficient is an important parameter for evaluation of aging degradation.

  • PDF

A Study on the Disbonding Detection of Al/Al Honeycomb Sandwich Structures by Ultrasonic Methods (초음파를 이용한 Al/Al 하니캄 구조물의 Disbonding 검출에 관한 연구)

  • Cho, K.S.;Lee, J.S.;Chang, H.K.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.1
    • /
    • pp.29-37
    • /
    • 1990
  • In this study the disbonding tests of adhesively bonded Al/Al honeycomb structures were performed by ultrasonic methods. Ultrasonic C-scan squiter method and ultrasonic surface wave attenuation measuring method were applied for the detection of skin/core disbonding. The bonding quality of Al/Al honeycomb structures could be well evaluated by properly controlled ultrasonic parameters.

  • PDF

Nondestructive Evaluation for Degraded 2.25Cr-1Mo Steel though Surface SH-wave (표면SH파를 이용한 2.25Cr-1Mo강의 열화.손상 평가)

  • Kim, Hyun-Mook;Park, Ik-Keun;Park, Un-Su;Ahn, Hyung-Keun;Kim, Chung-Soek
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.280-285
    • /
    • 2000
  • It is very important to evaluate the surface or subsurface microstructure because of their influences on mechanical properties of materials. Surface SH-wave which is horizontally polarized shear wave traveling along near surface and subsurface layer is an attractive technique for material evaluation. The destructive method is widely used for the estimation of material degradation but it has a great difficulty in preparing specimens from in-service industrial facilities. In this study, nondestructive evaluation for degraded structural materials used at high temperature though surface SH-wave method is discussed. 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at $650^{\circ}$ were evaluated though ultrasonic nondestructive evaluation techniques investigating the change of sound velocity, attenuation coefficient and amplitude spectra. In addition, it has verified experimentally the frequency-dependence of attenuation coefficient though wavelet analysis method.

  • PDF

Ultrasonic Tissue Characterization by Digital Spectrum Analysis Technique (Digital Spectrum 분석방법을 이용한 조직특성 변수에 관한 연구)

  • 곽철은;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.55-62
    • /
    • 1984
  • A digital spectrum analysis technique was used to estimate the tissue characteristic parameters (transmission velocity and attenuation coefficient) in the phantom study and the human liver's ultrasound scanning. The soft tissue equivalent phantom was made with the combination materials of agar, water, powdered graphite, and n-propyl alcohol. In the human study, twenty five normal subjects and three patients with liver diseases were studied using the ultrasonic reflection signals and the spectrum analysis method The following results were obtained; 1. The soft tissue-equivalent materical could be produced with various acoustic parameters by changing the composition amount of the powdered graphite and n-propyl alcohol. 2. Attenuation coefficients of normal human liver tissue were estimated to be 0. 36 dB/cm MHz$\pm$0.11. In patients with liver disese, tile attenuation coefficients were shown to be different from the above normal values.

  • PDF

Degradation Assessment of Thermoplastic Synthetic Resin Using Propagation Characteristics of Ultrasound (초음파 전파특성을 이용한 열가소성 합성수지의 열화 평가)

  • Jeon, Woo-Sang;Kim, Gi-Jin;Kwon, Sung-Duk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.141-147
    • /
    • 2014
  • A nondestructive ultrasonic technique was applied to evaluate the thermal characteristics and degradation of synthetic polymer resin (plastics) with better cost-effectiveness and functionality than glass and metal. Thermoplastic and transparent acrylic resin (PMMA) specimens were annealed at below the glass transition temperature ($T_g$), and the propagation characteristics (attenuation and velocity) were measured. The attenuation increased and the velocity decreased with thermal degradation. The results showed that the thermal aging of the specimens could be evaluated quantitatively and that the Tg could be evaluated qualitatively.