• Title/Summary/Keyword: ultra-high performance concrete (UHPC)

Search Result 194, Processing Time 0.028 seconds

Compressive Strength and Tensile Behavior of Ultra-High Performance Concrete and High-Ductile Cementless Composite (초고성능 콘크리트와 고연성 무시멘트 복합재료의 압축 및 인장성능)

  • Choi, Jeong-Il;Park, Se Eon;Lee, Bang Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.69-75
    • /
    • 2017
  • Ultra-high performance concrete and high ductile cementless composite are considered as promising construction materials because those exhibits higher performance in terms of high strength and high ductility. The purpose of this study is to investigate experimentally the compressive strength and tensile behavior of ultra-high performance concrete and high ductile cementless composite. A series of experiments including density, compressive strength, and uniaxial tension tests were performed. Test results showed that the compressive strength and tensile strength of alkali-activated slag based high ductile cementless composite were lower than those of ultra-high performance concrete. However, the tensile strain capacity and toughness of alkali-activated slag based high ductile cementless composite were higher than those of ultra-high performance concrete. And it was exhibited that a high ductility up to 7.89% can be attainable by incorporating polyethylene fiber into the alkali-activated slag based cementless paste.

The Evaluation of Flexural Performance in UHPC(Ultra High Performance Concrete) according to Placement Methods (타설방법에 따른 초고성능 콘크리트의 휨성능 평가)

  • Ryu, Gum-Sung;Kang, Su-Tae;Park, Jung-Jun;Ahn, Ki-Hong;Koh, Kyung-Taek;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.357-360
    • /
    • 2008
  • UHPC which was a structural material exhibiting very remarkable mechanical performances with compressive strength, tensile strength and flexural strength rising up to 200MPa, 15MPa and 35MPa, respectively. In addition, this material presents exceptional durability regard to the very low diffusion and penetration speeds of noxious substances like chloride ions This study was carry out to evaluate the effect of flexural behavior according to placement method in UHPC. The results is showing that the placement methods have remarkable influence flexural strength Addition to it is showing that the placement methods made little difference in the first cracking strength but considerable gap up to 2 or 3 times in the ultimate flexural strength.

  • PDF

Evaluation of Impact resistance of UHPC Under Repeated Impact (반복충격을 받은 UHPC의 내충격성능 평가)

  • Jeong, Min-Seung;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.161-162
    • /
    • 2018
  • In this study, it evaluate the impact resistance of UHPC by repeated impact. smooth steel fiber and polyvinyl alcohol fiber were reinforced in UHPC respectively. Overall, the impact resistance of the specimens reinforced with 0.4vol.% PVA fiber was high, and the crater diameter was small in specimens using 13mm fiber. When 19 mm steel fiber is used, the fracture depth is small due to the increase of macro crack resistance compared with other specimens. On the other hand, in the case of the fracture area, it is considered that the use of the fiber of 13 mm causes an increase in the stress dispersion effect to occur small.

  • PDF

Evaluation of Fracture Behaviours of Cementitious Composites by High-velocity Projectile Impact (고속 비상체 충격에 의한 시멘트 복합체의 파괴거동 평가)

  • Min, Ji-Young;Cho, Hyun-Woo;Lee, Jang-Hwa;Kim, Sung-Wook;Moon, Jae-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.55-62
    • /
    • 2015
  • An importance of infrastructures' protection against crash or blast loading has been an emerging issue as structures are becoming much bigger and population densities in downtown are growing up. However, there exists no such a standard to evaluate the protection performance of construction material itself. Prior to building standards for protection assessment techniques, this study performed gas-gun propelled projectile impact tests with series of contact-type monitoring systems to investigate the applicability of each sensing type. Through the impact tests, failure modes and protection performances of both normal concrete and UHPC (Ultra High Performance Concrete) reinforced by steel fibers were also evaluated. The results showed that LVDT could be applicable for the impact test among contact-type sensors and UHPC with fibers had a remarkable potential to improve protection against impact loading.

Study on Mock-up Construction Example of Free-Form Building Facade using External UHPC Panels - Focused on the Construction of Busan Opera House - (UHPC 외장패널을 활용한 비정형건축물 외장패널의 목업 시공사례에 대한 연구 - 부산 오페라 하우스 신축 공사 -)

  • Kim, Tae-Ik;Yoon, Ju-Yong;Choi, Byung-Keol;Park, Yong-Kyu;Yoon, Gi-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.187-188
    • /
    • 2021
  • In the case of the Busan North Port, where the Busan Opera House is located, it is an environment exposed to various external deterioration factors such as frequent strong winds, seawater and salty winds, and an exterior material using UHPC (Ultra High Performance Concrete), a highly durable exterior material as a solution to this. Has been adopted. in this study, an economical production and construction direction was reviewed by applying UHPC to the exterior panels of atypical buildings that cannot cope with GFRC, metal, and glass, which are the main exterior finishing materials applied so far. When steel fibers are used, structural performance may be better than organic fibers, but due to environmental factors in Busan, corrosion due to exposure to steel fibers or problems with safety management after construction and completion may occur. Therefore, the site used the newly developed SACF fiber. Facade design of atypical buildings, which will increase in the future, is an important part, and the scope of use of UHPC panels is expected to increase in the future as design trends and demand for high durability increase.

  • PDF

Nondestructive detection of crack density in ultra-high performance concrete using multiple ultrasound measurements: Evidence of microstructural change

  • Seungo Baek;Bada Lee;Jeong Hoon Rhee;Yejin Kim;Hyoeun Kim;Seung Kwan Hong;Goangseup Zi;Gun Kim;Tae Sup Yun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.399-407
    • /
    • 2024
  • This study nondestructively examined the evolution of crack density in ultra-high performance concrete (UHPC) upon cyclic loading. Uniaxial compression was repeatedly applied to the cylindrical specimens at levels corresponding to 32% and 53% of the maximum load-bearing capacity, each at a steady strain rate. At each stage, both P-wave and S-wave velocities were measured in the absence of the applied load. In particular, the continuous monitoring of P-wave velocity from the first loading prior to the second loading allowed real-time observation of the strengthening effect during loading and the recovery effect afterwards. Increasing the number of cycles resulted in the reduction of both elastic wave velocities and Young's modulus, along with a slight rise in Poisson's ratio in both tested cases. The computed crack density showed a monotonically increasing trend with repeated loading, more significant at 53% than at 32% loading. Furthermore, the spatial distribution of the crack density along the height was achieved, validating the directional dependency of microcracking development. This study demonstrated the capability of the crack density to capture the evolution of microcracks in UHPC under cyclic loading condition, as an early-stage damage indicator.

An Experimental Study on the Effect on Strength and Internal Structure for UHPC by Silics Fume Replacement Ratio (실리카 퓸의 첨가량에 따른 UHPC의 강도와 내부조직에 미치는 영향에 관한 실험적 연구)

  • Park, Jung-Jun;Kang, Su-Tae;Ryu, Gum-Sung;Koh, Gyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.765-768
    • /
    • 2008
  • Silica fume is a very important gradient in UHPC(Ultra High Performance Concrete) and its amount is normally over 25% of cement(wt.%). But we surely need to comprehend the influence of the amount of silica fume on the UHPC. In this paper, it was investigated how the amount of silica fume influence on the properties such as fluidity, compressive strength, elastic modulus, and flexural strength. Furthermore, it was examined the internal micro structure on UHPC through the test of SEM and MIP. In results, If we properly use silica fume in UHPC, fluidity and strength of UHPC was increased. It can be ascertained through the test of MIP that silica fume effectively increased density of UHPC by posolanic reaction and acting as filler. Especially, In case of Cement to silica fume ratio$0.1{\sim}0.25%$, we can be concluded that UHPC has similar to mechanical property.

  • PDF

Test and simulation of circular steel tube confined concrete (STCC) columns made of plain UHPC

  • Le, Phong T.;Le, An H.;Binglin, Lai
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.643-657
    • /
    • 2020
  • This study presents experimental and numerical investigations on circular steel tube confined ultra high performance concrete (UHPC) columns under axial compression. The plain UHPC without fibers was designed to achieve a compressive strength ranged between 150 MPa and 200 MPa. Test results revealed that loading on only the UHPC core can generate a significant confinement effect for the UHPC core, thus leading to an increase in both strength and ductility of columns, and restricting the inherent brittleness of unconfined UHPC. All tested columns failed by shear plane failure of the UHPC core, this causes a softening stage in the axial load versus axial strain curves. In addition, an increase in the steel tube thickness or the confinement index was found to increase the strength and ductility enhancement and to reduce the magnitude of the loss of load capacity. Besides, steel tube with higher yield strength can improve the post-peak behavior. Based on the test results, the load contribution of the steel tube and the concrete core to the total load was examined. It was found that no significant confinement effect can be developed before the peak load, while the ductility of post-peak stage is mainly affected by the degree of the confinement effect. A finite element model (FEM) was also constructed in ABAQUS software to validate the test results. The effect of bond strength between the steel tube and the UHPC core was also investigated through the change of friction coefficient in FEM. Furthermore, the mechanism of circular steel tube confined UHPC columns was examined using the established FEM. Based on the results of FEM, the confining pressures along the height of each modeled column were shown. Furthermore, the interaction between the steel tube and the UHPC core was displayed through the slip length and shear stresses between two surfaces of two materials.

Design and behavior of 160 m-tall post-tensioned precast concrete-steel hybrid wind turbine tower

  • Wu, Xiangguo;Zhang, Xuesen;Zhang, Qingtan;Zhang, Dong;Yang, Xiaojing;Qiu, Faqiang;Park, Suhyun;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.407-421
    • /
    • 2022
  • Prefabricated hybrid wind turbine towers (WTTs) are promising due to height increase. This study proposes the use of ultra-high performance concrete (UHPC) to develop a new type of WTT without the need to use reinforcement. It is demonstrated that the UHPC WTT structure without reinforcing bars could achieve performance similar to that of reinforced concrete WTTs. To simplify the design of WTT, a design approach for the calculation of stresses at the horizontal joints of a WTT is proposed. The stress distribution near the region of the horizontal joint of the WTT structure under normal operating conditions and different load actions is studied using the proposed approach, which is validated by the finite element method. A further parametric study shows that the degree of prestressing and the bending moment both significantly affect the principal stress. The shear-to-torsion ratio also shows a significant influence on the principal tensile stress.

Effect of ages and season temperatures on bi-surface shear behavior of HESUHPC-NSC composite

  • Yang Zhang;Yanping Zhu;Pengfei Ma;Shuilong He;Xudong Shao
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.359-376
    • /
    • 2023
  • Ultra-high-performance concrete (UHPC) has become an attractive cast-in-place repairing material for existing engineering structures. The present study aims to investigate age-dependent high-early-strength UHPC (HESUHPC) material properties (i.e., compressive strength, elastic modulus, flexural strength, and tensile strength) as well as interfacial shear properties of HESUHPC-normal strength concrete (NSC) composites cured at different season temperatures (i.e., summer, autumn, and winter). The typical temperatures were kept for at least seven days in different seasons from weather forecasting to guarantee an approximately consistent curing and testing condition (i.e., temperature and relative humidity) for specimens at different ages. The HESUHPC material properties are tested through standardized testing methods, and the interfacial bond performance is tested through a bi-surface shear testing method. The test results quantify the positive development of HESUHPC material properties at the early age, and the increasing amplitude decreases from summer to winter. Three-day mechanical properties in winter (with the lowest curing temperature) still gain more than 60% of the 28-day mechanical properties, and the impact of season temperatures becomes small at the later age. The HESUHPC shrinkage mainly occurs at the early age, and the final shrinkage value is not significant. The HESUHPC-NSC interface exhibits sound shear performance, the interface in most specimens does not fail, and most interfacial shear strengths are higher than the NSC-NSC composite. The HESUHPC-NSC composites at the shear failure do not exhibit a large relative slip and present a significant brittleness at the failure. The typical failures are characterized by thin-layer NSC debonding near the interface, and NSC pure shear failure. Two load-slip development patterns, and two types of main crack location are identified for the HESUHPC-NSC composites tested in different ages and seasons. In addition, shear capacity of the HESUHPC-NSC composite develops rapidly at the early age, and the increasing amplitude decreases as the season temperature decreases. This study will promote the HESUHPC application in practical engineering as a cast-in-place repairing material subjected to different natural environments.