• Title/Summary/Keyword: ultra high-performance concrete

Search Result 357, Processing Time 0.026 seconds

Design and Experimental Evaluations of Non-Uniform Precast Ultra High-Strength Concrete Beams (비정형 프리캐스트 초고강도 콘크리트 보의 설계 및 실험 평가)

  • Kim, Hoyeon;Cho, Chang-Geun;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.99-108
    • /
    • 2018
  • This paper presents the design, analysis, and experimental evaluations of precast reinforced UHPC (ultra high-performance concrete) beams with a new design concept of non-uniform flexural members. With outstanding mechanical properties of UHPC which can develop the compressive strength up to 200MPa, the tensile strengths up to 8~20MPa and the tensile strain up to 1~5%, a non-uniform structural shape of UHPC flexural beams were optimally designed using three-dimensional finite element analysis. The experiments were carried out and compared with the design strength in order to verify the performance of them. Proposed non-uniform UHPC beams were evaluated by a series of three-point beam loading test as well as estimated by design bending and shear strength of members. The newly designed UHPC beams show excellent performances not only in transverse load capacities but also in deformation capacities.

A comparative study on the mechanical properties of ultra early strength steel fiber concrete

  • Yi-Chun Lai;Ming-Hui Lee;Yuh-Shiou Tai
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.255-267
    • /
    • 2023
  • The production of ultra-early-strength concrete (UESC) traditionally involves complexity or necessitates high-temperature curing conditions. However, this study aimed to achieve ultra-early-strength performance solely through room-temperature curing. Experimental results demonstrate that under room-temperature (28℃) curing conditions, the concrete attained compressive strengths of 20 MPa at 4 hours and 69.6 MPa at 24 hours. Additionally, it exhibited a flexural strength of 7.5 MPa after 24 hours. In contrast, conventional concrete typically reaches around 20.6 MPa (3,000 psi) after approximately 28 days, highlighting the rapid strength development of the UESC. This swift attainment of compressive strength represents a significant advancement for engineering purposes. Small amounts of steel fibers (0.5% and 1% by volume, respectively) were added to address potential concrete cracking due to early hydration heat and enhance mechanical properties. This allowed observation of the effects of different volume contents on ultra-early-strength fiber-reinforced concrete (UESFRC). Furthermore, the compressive strength of 0.5% and 1% UESFRC increased by 16.3% and 31.3%, respectively, while the flexural strength increased by 37.1% and 47.9%. Moreover, toughness increased by 58.2 and 69.7 times, respectively. These findings offer an effective solution for future emergency applications in public works.

Autogenous shrinkage of ultra high performance concrete considering early age coefficient of thermal expansion

  • Park, Jung-Jun;Yoo, Doo-Yeol;Kim, Sung-Wook;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.763-773
    • /
    • 2014
  • The recently developed Ultra High Performance Concrete (UHPC) displays outstanding compressive strength and ductility but is also subjected to very large autogenous shrinkage. In addition, the use of forms and reinforcement to confine this autogenous shrinkage increases the risk of shrinkage cracking. Accordingly, this study adopts a combination of shrinkage reducing admixture and expansive admixture as a solution to reduce the shrinkage of UHPC and estimates its appropriateness by evaluating the compressive and flexural strengths as well as the autogenous shrinkage according to the age. Moreover, the coefficient of thermal expansion known to experience sudden variations at early age is measured in order to evaluate exactly the autogenous shrinkage and the thermal expansion is compensated considering these measurements. The experimental results show that the compressive and flexural strengths decreased slightly at early age when mixing 7.5% of expansive admixture and 1% of shrinkage reducing admixture but that this decrease becomes insignificant after 7 days. The use of expansive admixture tended to premature the setting of UHPC and the start of sudden increase of autogenous shrinkage. Finally, the combined use of shrinkage reducing admixture and expansive admixture appeared to reduce effectively the autogenous shrinkage by about 47% at 15 days.

Ultimate Shear Capacity of Prestressed Girder of Ultra High Performance Fiber Reinforced Concrete (초고강도 섬유보강 콘크리트 프리스트레스트 거더의 극한 전단력)

  • Han, Sang-Mook;Wu, Xiang-Guo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.51-58
    • /
    • 2008
  • This study is to investigate the ultimate shear load of prestressed girder made of Ultra High Performance Fiber Reinforced Concrete (UHPFRC). Nine girders were tested until failure in shear. An analytical model to predict the ultimate shear load was formulated based on the Two Bounds Theory. A fiber reinforcing model was constituted based on the random assumption of steel fiber uniform distribution. The predicted values were compared with the conventional predictions and the test results. The proposed equations for computing the ultimate shear strength can be used for the ultimate failure status analysis, which could also be utilized for numerical limit analysis of prestressed UHPFRC girder. The established fiber reinforcing theoretical model can also be a reference for micro-mechanics analysis of UHPFRC.

Control of Tensile Behavior of Ultra-High Performance Concrete Through Artificial Flaws and Fiber Hybridization

  • Kang, Su-Tae;Lee, Kang-Seok;Choi, Jeong-Il;Lee, Yun;Felekoglu, Burak;Lee, Bang Yeon
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.33-41
    • /
    • 2016
  • Ultra-high performance concrete (UHPC) is one of the most promising construction materials because it exhibits high performance, such as through high strength, high durability, and proper rheological properties. However, it has low tensile ductility compared with other normal strength grade high ductile fiber-reinforced cementitious composites. This paper presents an experimental study on the tensile behavior, including tensile ductility and crack patterns, of UHPC reinforced by hybrid steel and polyethylene fibers and incorporating plastic beads which have a very weak bond with a cementitious matrix. These beads behave as an artificial flaw under tensile loading. A series of experiments including density, compressive strength, and uniaxial tension tests were performed. Test results showed that the tensile behavior including tensile strain capacity and cracking pattern of UHPC investigated in this study can be controlled by fiber hybridization and artificial flaws.

Effect of Aggregate on Mechanical Properties of Ultra-High Strength Concrete Exposed to High Temperature (고온을 받은 초고강도 콘크리트의 역학적 특성에 관한 골재의 영향)

  • Kim, Young-Sun;Choi, Hyoung-Gil;Ohmiya, Yoshifumi;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.431-440
    • /
    • 2011
  • Concrete structures exposed to fire produce changes in their internal structure, resulting in their service life reduction due to the deterioration of its strength and performance capacity. The deterioration level are dependent on the temperature, exposure time, concrete mix proportions, aggregate property, and material properties. This study was performed to evaluate the thermal behavior of ultra-high strength concrete for the parameters of water to cement ratio (compressive strength), fine to total aggregate ratio, and maximum coarse aggregate size. At room temperature and $500^{\circ}C$, tests of ultrasonic pulse velocity, resonance frequency, static modulus of elasticity, and compressive strength are performed using ${\varnothing}100{\times}200\;mm$ cylindrical concrete specimens. The results showed that the residual mechanical properties of ultra-high strength concrete heated to $500^{\circ}C$ is influenced by variation of a water to binder ratio, fine to total aggregate ratio, and maximum coarse aggregate size.

A numerical tension-stiffening model for ultra high strength fiber-reinforced concrete beams

  • Na, Chaekuk;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.1-22
    • /
    • 2011
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber-reinforced concrete (UHSFRC) structures subject to monotonic loadings is introduced. Since engineering material properties of UHSFRC are remarkably different from those of normal strength concrete and engineered cementitious composite, classification of the mechanical characteristics related to the biaxial behavior of UHSFRC, from the designation of the basic material properties such as the uniaxial stress-strain relationship of UHSFRC to consideration of the bond stress-slip between the reinforcement and surrounding concrete with fiber, is conducted in this paper in order to make possible accurate simulation of the cracking behavior in UHSFRC structures. Based on the concept of the equivalent uniaxial strain, constitutive relationships of UHSFRC are presented in the axes of orthotropy which coincide with the principal axes of the total strain and rotate according to the loading history. This paper introduces a criterion to simulate the tension-stiffening effect on the basis of the force equilibriums, compatibility conditions, and bond stress-slip relationship in an idealized axial member and its efficiency is validated by comparison with available experimental data. Finally, the applicability of the proposed numerical model is established through correlation studies between analytical and experimental results for idealized UHSFRC beams.

A Stress Transfer Length of Pre-tensioned Members Using Ultra High Performance Concrete (초고성능 콘크리트 프리텐션부재의 응력전달길이)

  • Kim, Jee-Sang;Choi, Dong-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.336-341
    • /
    • 2018
  • The prestressing force introduced to the tendon in pretensioned concrete members is transferred by direct bond between tendon and concrete, which requires a proper estimation of stress transfer length. The use of pretensiond and/or precast members with UHPC (Ultra High Performance Concrete) may give many advantages in quality control. This paper presents an experiment to estimate the stress transfer length of UHPC for various compressive strength levels of UHPC, cover depths, diameters of tendons and tensioning forces. According to the result of this experiment, the stress transfer length of UHPC member is much reduced comparing that of normal strength concrete. The reduction in stress transfer length of UHPC may come from the high bond strength capacity of UHPC. The transfer lengths obtained from this experiment are compared to those in current design code and a new formula is proposed.

Estimation of Punching Shear Strength for Ultra High Performance Concrete Thin Slab (강섬유 보강 초고성능 콘크리트 슬래브의 뚫림 전단 성능 평가)

  • Park, Ji-Hyun;Hong, Sung-gul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2015
  • UHPC(Ultra High Performance Concrete) is used widely with its remarkable performance, such as strength, ductility and durability. Since the fibers in the UHPC can control the tensile crack, the punching shear capacity of UHPC is higher than that of the conventional concrete. In this paper, seven slabs with different thickness and fiber volume ratio were tested. The ultimate punching shear strength was increased with the fiber volume ratio up to 1%. The shear capacity of specimens with the fiber content 1% and 1.5% do not have big differences. The thicker slab has higher punching shear strength and lower deformation capacity. The critical sections of punching shear failure were similar regardless of the fiber volume ratio, but it were larger in thicker slab.

Modeling the transverse connection of fully precast steel-UHPC lightweight composite bridge

  • Shuwen Deng;Zhiming Huang;Guangqing Xiao;Lian Shen
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.391-404
    • /
    • 2023
  • In this study, the modeling of the transverse connection of fully precast steel-UHPC (Ultra-High-Performance Concrete) lightweight composite bridges were conducted. The transverse connection between precast components plays a critical role in the overall performance and safety of the bridge. To achieve an accurate and reliable simulation of the interface behavior, the cohesive model in ABAQUS was employed, considering both bending-tension and compression-shear behaviors. The parameters of the cohesive model are obtained through interface bending and oblique shear tests on UHPC samples with different surface roughness. By validating the numerical simulation against actual joint tests, the effectiveness and accuracy of the proposed model in capturing the interface behavior of the fully precast steel-UHPC lightweight composite bridge were demonstrated.