DOI QR코드

DOI QR Code

Modeling the transverse connection of fully precast steel-UHPC lightweight composite bridge

  • Shuwen Deng (College of Civil Engineering, Hunan University) ;
  • Zhiming Huang (College of Water Resource & Civil Engineering, Hunan Agriculture University) ;
  • Guangqing Xiao (Guangdong Shengxiang Traffic Engineering Testing Co., Ltd.) ;
  • Lian Shen (Department of Civil Engineering, Changsha University)
  • Received : 2022.10.19
  • Accepted : 2023.08.09
  • Published : 2023.06.25

Abstract

In this study, the modeling of the transverse connection of fully precast steel-UHPC (Ultra-High-Performance Concrete) lightweight composite bridges were conducted. The transverse connection between precast components plays a critical role in the overall performance and safety of the bridge. To achieve an accurate and reliable simulation of the interface behavior, the cohesive model in ABAQUS was employed, considering both bending-tension and compression-shear behaviors. The parameters of the cohesive model are obtained through interface bending and oblique shear tests on UHPC samples with different surface roughness. By validating the numerical simulation against actual joint tests, the effectiveness and accuracy of the proposed model in capturing the interface behavior of the fully precast steel-UHPC lightweight composite bridge were demonstrated.

Keywords

Acknowledgement

The authors acknowledge the financial support received from the National Natural Science Foundation of China (No. 52108211), Hunan Provincial Department of Education (No. 21B0188), and Natural Science Foundation of Hunan Province (No. 2022JJ40186).

References

  1. Abokifa, M. and Moustafa, M.A. (2021), "Experimental behavior of precast bridge deck systems with non-proprietary UHPC transverse field joints", Materials, 14(22), 6964. https://doi.org/10.3390/ma14226964
  2. AFGC-SETRA (2013), Ultra high performance fibrereinforced concretes, Recommendations, Paris: AFGC&SETRA Working Group.
  3. Bayat, M., Kia, M., Soltangharaei, V., Ahmadi, H.R. and Ziehl, P. (2020), "Bayesian demand model based seismic vulnerability assessment of a concrete girder bridge", Adv. Concrete Constr., Int. J., 9(4), 337-343. https://doi.org/10.12989/acc.2020.9.4.337
  4. Birkeland, P.W. and Birkeland, H.W. (1966), "Connections in precast concrete construction", In: Journal Proceedings, Vol. 63, No. 3, pp. 345-368.
  5. Cao, J.H. (2016), "Research on basic performance of steel-thin UHPC lightweight composite deck", Ph.D. Dissertation; Hunan University, Changsha, China.
  6. Carbonell, M.A., Harris, D.K., Ahlborn, T.M. and Froster, D.C. (2014), "Bond performance between ultrahigh-performance concrete and normal-strength concrete", J. Mater. Civil Eng., 26(8), 04014031. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000890
  7. Chen, D. and El-Hacha, R. (2015), "Investigation of hybrid FRPUHPC beams under flexure with finite element method", In: International Concrete - Special Publication, 301, 1-16. https://doi.org/10.14359/51687993
  8. Chen, L. and Graybeal, B.A. (2011), "Finite Element Modeling of Ultra-High-Performance Concrete Bridge Girders", Transportation Research Board Meeting.
  9. Chen, L. and Graybeal, B.A. (2012a), "Modeling structural performance of ultrahigh performance concrete I-girders", J. Bridge Eng., 17, 754-764. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000305
  10. Chen, L. and Graybeal, B.A. (2012b), "Modeling structural performance of second-generation ultrahigh-performance concrete pi-girders", J. Bridge Eng., 17(4), 634-643. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000301
  11. Chitty, F.D., Freeman, C.J. and Garber, D.B. (2020), "Joint design optimization for accelerated construction of slab beam bridges", J. Bridge Eng., 25(7), 04020029. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001561
  12. Dadmand, B., Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2020), "Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction", Adv. Concrete Constr., Int. J., 10(3), 195-209. https://doi.org/10.12989/acc.2020.10.3.195
  13. Deng, S., Shao, X., Yan, B., Wang, Y. and Li, H. (2020), "On flexural performance of girder-to-girder wet joint for lightweight steel-UHPC composite bridge", Appl. Sci., 10, 1335. https://doi.org/10.3390/app10041335
  14. Deng, S., Shao, X., Yan, B., Zhao, X. and Wang, Y. (2021), "Transverse joint design of small-medium-span fully precast steel-UHPC lightweight composite bridge", J. Bridge Eng., 26(8), 04021046. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001745
  15. Deng, E.F., Zhang, Z., Zhang, C.X., Tang, Y., Wang, W., Du, Z.J. and Gao, J.P. (2023), "Experimental study on flexural behavior of UHPC wet joint in prefabricated multi-girder bridge", Eng. Struct., 275, 115314. https://doi.org/10.1016/j.engstruct.2022.115314
  16. Dias-da-Costa, D., Alfaiate, J. and Julio, E.N.B.S. (2012), "FE modeling of the interfacial behaviour of composite concrete members", Constr. Build. Mater., 26(1), 233-243. https://doi.org/10.1016/j.conbuildmat.2011.06.015
  17. Du, L., Qi, J., Cheng, Z. and Wang, J. (2022), "Finite element modeling of UHPC slabs with dovetail joints and steel wire mesh using an innovative interfacial treating method", In: Structures, 37, 745-755 https://doi.org/10.1016/j.istruc.2022.01.057
  18. Elices, M., Guinea, G.V. and Planas, J. (1992), "Measurement of the fracture energy using three-point bend tests: Part 3-influence of cutting the P-δ tail", Mater. Struct., 25, 327-334. https://doi.org/10.1007/BF02472591
  19. Farzad, M., Shafieifar, M. and Azizinamini, A. (2019), "Experimental and numerical study on bond strength between conventional concrete and Ultra High-Performance Concrete (UHPC)", Eng. Struct., 186, 297-305. https://doi.org/10.1016/j.engstruct.2019.02.030
  20. Ganesh, P. and Murthy, A.R. (2019), "Repair, retrofitting and rehabilitation techniques for strengthening of reinforced concrete beams-A review", Adv. Concrete Constr., Int. J., 8(2), 101-117. https://doi.org/10.12989/acc.2019.8.2.101
  21. Grace, N.F., Enomoto, T., Abdel-Mohti, A., Tokal, Y. and Puravankara, S. (2008), "Flexural behavior of precast concrete box beams post-tensioned with unbonded, carbon-fiber-composite cables", PCI J., 53(4).
  22. Grace, N., Ushijima, K., Baah, P. and Bebawy, M. (2013), "Flexural behavior of a carbon fiber-reinforced polymer prestressed decked bulb T-beam bridge system", J. Compos. Constr., 17(4), 497-506. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000345
  23. Graybeal, B. (2014), Design and Construction of Field-cast UHPC Connections, (No. FHWA-HRT-14-084; HRDI-40/10-14 (750) E), Federal Highway Administration, United States.
  24. Hajek, R., Hornikova, K. and Foglar, M. (2020) "Numerical assessment of the response of a heterogeneous concrete-based composite bridge deck to a near field explosion", Eng. Struct., 225, 111206. https://doi.org/10.1016/j.engstruct.2020.111206
  25. Han, J.H. (2002), "Research on Bonding Fracture Behavior of Old and New Concrete and Engineering Application", Ph.D. Dissertation; Dalian University of Technology, Dalian, China.
  26. Han, J.H., Zhao, G.F. and Zhang, L.S. (2004), "Study of the fracture process zone of adhesive interface of new and old concrete", Eng. Mech., 21, 31-35. https://doi.org/10.3901/JME.2004.03.031
  27. Harris, D., Munoz, M.C., Gheitasi, A., Ahlborn, T. and Rush, S. (2015), "The challenges related to interface bond characterization of ultra-high-performance concrete with implications for bridge rehabilitation practices", Adv. Civil Eng. Mater., 4(2), 75-101. https://doi.org/10.1520/ACEM20140034
  28. He, Z.-Q., Ma, Z.J., Chapman, C.E. and Liu, Z. (2013), "Longitudinal joints with accelerated construction features in decked bulb-tee girder bridges: Strut-and-tie model and design guidelines", J. Bridge Eng., 18, 372-379. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000378
  29. He, S., Mosallam, A.S., Fang, Z. and Liu, L. (2019), "Structural evaluation of steel-concrete joint with UHPC grout in single cable-plane hybrid cable-stayed bridges", J. Bridge Eng., 24, 04019022. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001379
  30. Hussein, H.H., Sargand, S.M., Al Rikabi, F.T. and Steinberg, E.P. (2017a), "Laboratory evaluation of ultrahigh-performance concrete shear key for prestressed adjacent precast concrete box girder bridges", J. Bridge Eng., 22, 04016113. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000987
  31. Hussein, H.H., Walsh, K.K., Sargand, SM., Al Rikabi, F.T. and Steinberg, E.P. (2017b), "Modeling the shear connection in adjacent box-beam bridges with ultrahigh-performance concrete joints. I: Model calibration and validation", J. Bridge Eng., 22, 04017043. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001070
  32. Hussein, H.H., Sargand, S.M., Zhu, Y., Khoury, I. and Al Rikabi, F.T. (2022), "Experimental and numerical investigation on optimized ultra-high performance concrete shear key with shear reinforcement bars", Structures, 40, 403-419. https://doi.org/10.1016/j.istruc.2022.04.037
  33. Jang, H.-O., Lee, H.-S., Cho, K. and Kim, J. (2018), "Numerical and experimental analysis of the shear behavior of ultrahigh-performance concrete construction joints", Adv. Mater. Sci. Eng., 2018, 1-17. https://doi.org/10.1155/2018/6429767
  34. Jia, J., Ren, Z., Bai, Y., Li, J., Li, B., Sun, Y., Zhang, Z. and Zhang, J. (2023), "Tensile behavior of UHPC wet joints for precast bridge deck panels", Eng. Struct., 282, 115826. https://doi.org/10.1016/j.engstruct.2023.115826
  35. Jiang, H., Hu, Z., Feng, J., Wang, T. and Xu, Z. (2022), "Flexural behavior of UHPC-filled longitudinal connections with non-contacting lap-spliced reinforcements for narrow joint width", Structures, 39, 620-636. https://doi.org/10.1016/j.istruc.2022.03.017
  36. Julio, E.N., Branco, F.A., Silva, V.D. and Lourenco, J.F. (2006), "Influence of added concrete compressive strength on adhesion to an existing concrete substrate". Build. Environ., 41, 1934-1939. https://doi.org/10.1016/j.buildenv.2005.06.023
  37. Katman, H.Y.B., Khai, W.J., Bheel, N., Kirgiz, M.S., Kumar, A. and Benjeddou, O. (2022), "Fabrication and characterization of cement-based hybrid concrete containing coir fiber for advancing concrete construction", Buildings, 12(9), 1450. https://doi.org/10.3390/buildings12091450
  38. Larsson, J., Eriksson, P.E., Olofsson, T. and Simonsson, P. (2014), "Industrialized construction in the Swedish infrastructure sector: Core elements and barriers", Constr. Manage. Econom., 32(1-2), 83-96. https://doi.org/10.1080/01446193.2013.833666
  39. Liao, Z. (2018), "Experimental research on bond strength of UHPC-NC interface", Master Dissertation; Hunan University, Changsha, China.
  40. Lu, K., Xu, Q., Li, W., Hu, Y., Wang, J. and Yao, Y. (2021), "Fatigue performance of UHPC bridge deck system with fieldcast dovetail joint", Eng. Struct., 237, 112108. https://doi.org/10.1016/j.engstruct.2021.112108
  41. Mosaberpanah, M.A. and Eren, O. (2017), "Effect of quartz powder, quartz sand and water curing regimes on mechanical properties of UHPC using response surface modelling", Adv. Concrete Constr., Int. J. 5(5), 481-492. https://doi.org/10.12989/acc.2017.5.5.481
  42. MOHURD (2013), Code for design of steel and concrete composite bridges (GB50917-2013), China Planning Press, Beijing, China.
  43. Pan, W.H., Fan, J.S., Nie, J.G., Hu, J.H. and Cui, J.F. (2016), "Experimental study on tensile behavior of wet joints in a prefabricated composite deck system composed of orthotropic steel deck and ultrathin reactive-powder concrete layer", J. Bridge Eng., 21, 04016064. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000935
  44. Pham, H.D., Khuc, T., Nguyen, T.V., Cu, H.V., Le, D.B. and Trinh, T.P. (2020), "Investigation of flexural behavior of a prestressed girder for bridges using nonproprietary UHPC", Adv. Concrete Constr., Int. J., 10(1), 71-79. https://doi.org/10.12989/acc.2020.10.1.071
  45. Porter, S.D., Julander, J.L., Halling, M.W., Barr, P.J., Boyle, H. and Xing, S. (2011), "Flexural testing of precast bridge deck panel connections", J. Bridge Eng., 16, 422-430. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000173
  46. Qi, J., Bao, Y., Wang, J., Li, L. and Li, W. (2019), "Flexural behavior of an innovative dovetail UHPC joint in composite bridges under negative bending moment", Eng. Struct., 200, 109716. https://doi.org/10.1016/j.engstruct.2019.109716
  47. Qi, J., Cheng, Z., Wang, J., Zhu, Y. and Li, W. (2020), "Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges", Struct. Eng. Mech., Int. J., 75, 49-57. https://doi.org/10.12989/sem.2020.75.1.049
  48. Qiu, M., Shao, X., Yan, B., Zhu, Y. and Chen, Y. (2022), "Flexural behavior of UHPC joints for precast UHPC deck slabs", Eng. Struct., 251, 113422. https://doi.org/10.1016/j.engstruct.2021.113422
  49. Shah, Y.I., Hu, Z., Yin, B.S. and Li, X. (2021), "Flexural performance analysis of UHPC wet joint of prefabricated bridge deck", Arab. J. Sci. Eng., 46, 11253-11266. https://doi.org/10.1007/s13369-021-05735-z
  50. Shao, X.D., Chen, B. and Zhou, X.H. (2017), "Experiment on bending behavior of wet joints in light-weighted composite deck system composed of steel and RPC layer", China J. Highway Transport, 30, 210-217.
  51. Shao, X.D., Hu, W.Y., Qiu, M.H., Wang, Y. and Zhao, X.D. (2021), "Experiment on flexural behavior of UHPC joint in negative moment area of composite bridges", China J. Highway Transport, 34, 246-260.
  52. Steinberg, E., Huffman, J., Ubbing, J. and Giraldo-Londono, O. (2013), "Finite element modeling of adjacent prestressed concrete box-beams", Proc., PCI National Bridge Conference, Precast/Prestressed Concrete Institute, Chicago, IL, USA.
  53. Systemes, D. (2010), Abaqus 6.10: Analysis user's manual, Dassault Systemes Simulia Corp., Providence, RI, USA.
  54. Tan, Y., Lv, L.S., Zhang, D.W., Jin, W.L., Fang, M.S. and Li, S.H. (2022), "Fatigue performance of a simply-supported T-beam UHPC bridge deck variable section joint structure", Eng. Struct., 269, 114758. https://doi.org/10.1016/j.engstruct.2022.114758
  55. Ulku, E., Attanayake, U. and Aktan, H.M. (2010), "Rationally designed staged posttensioning to abate reflective cracking on side-by-side box-beam bridge decks", Transport. Res. Record, 2172, 87-95. https://doi.org/10.3141/2172-10
  56. Wall, J. and Shrive, N. (1988), "Factors affecting bond between new and old concrete", ACI Mater. J., 85, 117-125.
  57. Xiao, J.L., Guo, L.X., Nie, J.G., Li, Y.L., Fan, J.S. and Shu, B.A. (2022), "Flexural behavior of wet joints in steel-UHPC composite deck slabs under hogging moment", Eng. Struct., 252, 113636. https://doi.org/10.1016/j.engstruct.2021.113636
  58. Yang, J. and Fang, Z. (2008), "Research on stress-strain relation of ultra high performance concrete", Concrete, 7, 11-15.
  59. Zhao, B. (2014), "Theoretical and experimental study on the constitutive relationship of HRB400 steel bar", Master Dissertation; Huazhong University of Science and Technology, China.
  60. Zhao, C., Wang, K., Xu, R., Deng, K. and Cui, B. (2019a), "Development of fully prefabricated steel-UHPC composite deck system", J. Struct. Eng., 145, 04019051. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002338
  61. Zhao, M., He, X.D., Qiu, M.H., Yan, B.F. and Shao, X.D. (2019b), "Fully prefabricated steel-HUPC lightlweight composite girder in medium and small span girder bridge", Highway Eng., 44(5), 63-66. https://doi.org/10.19782/j.cnki.1674-0610.2019.05.013
  62. Zhu, Y., Zhang, Y., Hussein, H.H. and Cai, S. (2020a), "Flexural study on UHPC-steel composite beams with joints under negative bending moment", J. Bridge Eng., 25(10), 04020084. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001619
  63. Zhu, Y., Zhang, Y., Hussein, H.H. and Chen, G. (2020b), "Flexural strengthening of reinforced concrete beams or slabs using ultrahigh performance concrete (UHPC): A state of the art review", Eng. Struct., 205, 110035. https://doi.org/10.1016/j.engstruct.2019.110035
  64. Zhu, Y., Zhang, Y., Hussein, H.H. and Chen, G. (2020c), "Numerical modeling for damaged reinforced concrete slab strengthened by ultra-high performance concrete (UHPC) layer", Eng. Struct., 209, 110031. https://doi.org/10.1016/j.engstruct.2019.110031
  65. Zhu, Y., Zhang, Y., Hussein, H.H., Liu, J. and Chen, G. (2020d), "Experimental study and theoretical prediction on shrinkage-induced restrained stresses in UHPC-RC composites under normal curing and steam curing", Cement Concrete Compos., 110, 103602. https://doi.org/10.1016/j.cemconcomp.2020.103602