• 제목/요약/키워드: ultimate capacity

검색결과 1,211건 처리시간 0.034초

The bearing capacity of square footings on a sand layer overlying clay

  • Uncuoglu, Erdal
    • Geomechanics and Engineering
    • /
    • 제9권3호
    • /
    • pp.287-311
    • /
    • 2015
  • The ultimate bearing capacity and failure mechanism of square footings resting on a sand layer over clay soil have been investigated numerically by performing a series of three-dimensional non-linear finite element analyses. The parameters investigated are the thickness of upper sand layer, strength of sand, undrained shear strength of lower clay and surcharge effect. The results obtained from finite element analyses were compared with those from previous design methods based on limit equilibrium approach. The results proved that the parameters investigated had considerable effect on the ultimate bearing capacity and failure mechanism occurring. It was also shown that the thickness of upper sand layer, the undrained shear strength of lower clay and the strength of sand are the most important parameters affecting the type of failure will occur. The value of the ultimate bearing capacity could be significantly different depending on the limit equilibrium method used.

The ultimate bearing capacity of rectangular tunnel lining assembled by composite segments: An experimental investigation

  • Liu, Xian;Hu, Xinyu;Guan, Linxing;Sun, Wei
    • Steel and Composite Structures
    • /
    • 제24권4호
    • /
    • pp.481-497
    • /
    • 2017
  • In this paper, full-scale loading tests were performed on a rectangular segmental tunnel lining, which was assembled by steel composite segments, to investigate its load-bearing structural behavior and failure mechanism. The tests were also used to confirm the composite effect by adding concrete inside to satisfy the required performance under severe loading conditions. The design of the tested rectangular segmental lining and the loading scheme are also described to better understand the bearing capacity of this composite lining structure. It is found that the structural ultimate bearing capacity is governed by the bond capacity between steel plates and the tunnel segment. The failure of the strengthened lining is the consequence of local failure of the bond at waist joints. This led to a fast decrease of the overall stiffness and eventually a loss of the structural integrity.

Ultimate behaviour and rotation capacity of stainless steel end-plate connections

  • Song, Yuchen;Uy, Brian;Li, Dongxu;Wang, Jia
    • Steel and Composite Structures
    • /
    • 제42권4호
    • /
    • pp.569-590
    • /
    • 2022
  • This paper presents a combined experimental and numerical study on stainless steel end-plate connections, with an emphasis placed on their ultimate behaviour and rotation capacity. In the experimental phase, six connection specimens made of austenitic and lean duplex stainless steels are tested under monotonic loads. The tests are specifically designed to examine the close-to-failure behaviour of the connections at large deformations. It is observed that the rotation capacity is closely related to fractures of the stainless steel bolts and end-plates. In the numerical phase, an advanced finite element model suitable for fracture simulation is developed. The incorporated constitutive and fracture models are calibrated based on the material tests of stainless steel bolts and plates. The developed finite element model exhibits a satisfactory accuracy in predicting the close-to-failure behaviour of the tested connections. Finally, the moment resistance and rotation capacity of stainless steel end-plate connections are assessed based on the experimental tests and numerical analyses.

Structural behavior of cable-stayed bridges after cable failure

  • Kim, Seungjun;Kang, Young Jong
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1095-1120
    • /
    • 2016
  • This paper investigates the change of structural characteristics of steel cable-stayed bridges after cable failure. Cables, considered as the intermediate supports of cable-stayed bridges, can break or fail for several reasons, such as fire, direct vehicle clash accident, extreme weather conditions, and fatigue of cable or anchorage. Also, the replacement of cables can cause temporary disconnection. Because of the structural characteristics with various geometric nonlinearities of cable-stayed bridges, cable failure may cause significant change to the structural state and ultimate behavior. Until now, the characteristics of structural behavior after cable failure have rarely been studied. In this study, rational cable failure analysis is suggested to trace the new equilibrium with structural configuration after the cable failure. Also, the sequence of ultimate analysis for the structure that suffers cable failure is suggested, to study the change of ultimate behavior and load carrying capacity under specific live load conditions. Using these analysis methods, the statical behavior after individual cable failure is studied based on the change of structural configuration, and distribution of internal forces. Also, the change of the ultimate behavior and load carrying capacity under specific live load conditions is investigated, using the proposed analysis method. According to the study, significant change of the statical behavior and ultimate capacity occurs although just one cable fails.

재료의 경년상태를 고려한 경수로형 격납건물의 극한내압능력 평가 (Evaluation of Ultimate Pressure Capacity of Light Water Reactor Containment Considering Aging of Materials)

  • 이상근;송영철;한상훈;권용길
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.147-154
    • /
    • 2001
  • The prestressed concrete containment is one of the most important structures in nuclear power plants, which is required to prevent release of radioactive or hazardous effluents to the environment even in the case of a severe accident. Numerical analyses are carried out by using the ABAQUS finite element program to assess the ultimate pressure capacity of the Y prestressed concrete containment with light water reactor at design criteria condition and aging condition considering varied properties of time-dependant materials respectively. From the results, it is verified that the structural capacity of the Y prestressed concrete containment building under the present, aging condition is still robust. In addition, the parameter studies for the reduction of the ultimate pressure capacity of containment building according to the degradation levels of the main structural materials are carried out. The results show that when the degradations of each materials are considered as individual and combined forms, the influence is large in the order of tendon, rebar and concrete degradation, and tendon-rebar, tendon-concrete and rebar-concrete degradation respectively.

  • PDF

소형 압력 토조내에 타입된 말뚝의 인발 거동과 극한 인발 지지력 결정에 관한 연구 (Study on Pullout Behavior and Determination of Ultimate Uplift Capacity of Pile Driven in Small Pressured Chamber)

  • 최용규
    • 한국지반공학회지:지반
    • /
    • 제11권2호
    • /
    • pp.19-28
    • /
    • 1995
  • 소형 압력 토조(small pressure chamber)를 이용하여 포화된 사질토에 타입된 폐단 강관 말뚝의 인발거동 특성을 연구하였다. 소형 압력 토조 시험에서는 인발 하중이 인발변위와 함께 증가하다가 급작스러운 미끄러짐 변위가 발생되는 현상이 2-3회 반복되다가 완전 인발파괴에 이르게 되는데, 이때 첫번째 미끄러짐 변위가 발생하는 하중의 크기를 극한 인발 지지력으로 정의할 수 있다. 또한, 소형 압력 토조 시험에서는 미세한 시험 조건에 의해서도 극한 인발 지지력의 크기가 50% 이상의 오차를 나타낼 수도 있으므로 모형 지반을 형성할 때마다 인발 재하 시험에 의하여 극한 인발 지지력을 결정하여 사용하는 것이 좋을 것으로 판단되며, 이때 1차 인발 시험에 의해 교란된 지반의 상태는 모형 말뚝의 크기에 적합한 타격에너지를 가해주어 회복시킬 수 있다.

  • PDF

Experimental investigation of inelastic buckling of built-up steel columns

  • Hawileh, Rami A.;Abed, Farid;Abu-Obeidah, Adi S.;Abdalla, Jamal A.
    • Steel and Composite Structures
    • /
    • 제13권3호
    • /
    • pp.295-308
    • /
    • 2012
  • This paper experimentally investigated the buckling capacity of built-up steel columns mainly, Cruciform Columns (CC) and Side-to-Side (SS) columns fabricated from two Universal Beam (UB) sections. A series of nine experimental tests comprised of three UB sections, three CC sections and three SS sections with different lengths were tested to failure to measure the ultimate axial capacity of each column section. The lengths used for each category of columns were 1.8, 2.0, and 2.2 m with slenderness ratios ranging from 39-105. The measured buckling loads of the tested specimens were compared with the predicted ultimate axial capacity using Eurocode 3, AISC LRFD, and BS 5959-1. It was observed that the failure modes of the specimens included flexural buckling, local buckling and flexural-torsional buckling. The results showed that the ultimate axial capacity of the tested cruciform and side-by-side columns were higher than the code predicted design values by up to 20%, with AISC LRFD design values being the least conservative and the Eurocode 3 design values being the most conservative. This study has concluded that cruciform column and side-to-side welded flange columns using universal beam sections are efficient built-up sections that have larger ultimate axial load capacity, larger stiffness with saving in the weight of steel used compared to its equivalent universal beam counterpart.

응력상태를 고려한 사질토지반에 관입된 말뚝의 극한수평지지력 분석 및 평가 (Estimation of Pile Ultimate Lateral Load Capacity in Sand Considering Lateral Stress Effect)

  • 이준환;백규호;김대홍;황성욱;김민기
    • 한국지반공학회논문집
    • /
    • 제23권4호
    • /
    • pp.161-167
    • /
    • 2007
  • 본 연구에서는 수평하중을 받는 말뚝을 대상으로 응력상태에 따른 극한수평지지력의 변화추이를 분석하였으며, 이를 토대로 다양한 응력상태를 고려할 수 있는 극한수평지지력의 평가방법을 제안하였다. 이를 통해 기존의 수평지지력 평가방법에 있어 제한되었던 응력효과의 고려가 가능하게 되었으며, 지반조건 및 시공조건 등에 따른 지반응력 변화를 보다 효과적으로 반영할 수 있을 것으로 판단된다. 이를 위해 모래질 지반을 대상으로 모형토조에서 수행된 말뚝의 수평재하시험결과가 사용되었으며, 토조실험에는 다양한 범위의 응력상태가 고려되었다. 분석결과, 말뚝의 극한수평지지력은 수직응력 및 수평응력 모두에 영향을 받는 것으로 나타났으나, 수평응력에 따라 더욱 민감하게 변화하고 있음을 알 수 있었다. 극한수평지지지력이 발휘되는 변위량의 수준은 지반조건에 따라 달랐으며, 상대밀도가 50%범위에서는 상대변위량 14%내외, 86%내외에서는 18-25%정도의 상대변위량을 나타내었다. 본 연구결과에 근거하여 극한수평지지력 평가를 위한 수평토압보정계수가 제안되었으며, 제안된 평가법에 의한 예측치는 다양한 응력조건에 대해 실측치와 유사한 결과를 나타내었다.

지반층 변화에 따른 수평하중을 받는 말뚝의 거동 특성 (The behavior characteristic of the laterally loaded pile installed in multi-layered soil)

  • 경두현;홍정무;이준환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.533-538
    • /
    • 2009
  • Ultimate lateral loaded pile capacity is influenced by soil conditions. Methods of calculating ultimate lateral loaded pile capacity in homogeneous soil were suggested by a lot of previous researchers.(Broms 1964, Petrasovits & Award 1972, Prasad & Chari 1999) There is only few homogeneous soil in actual condition, however, it could be not conviction that the methods from previous researchers are correct in multi-layered soil. In this study, ultimate lateral capacities were estimated from artificial multi-layered soils and were measured from lateral load test that were composed by various soil conditions. The influence of layered soil conditions were confirmed by comparing with two results.

  • PDF

Ultimate behavior of long-span steel arch bridges

  • Cheng, Jin;Jiang, Jian-Jing;Xiao, Ru-Cheng;Xiang, Hai-Fan
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.331-343
    • /
    • 2002
  • Because of the increasing span of arch bridges, ultimate capacity analysis recently becomes more focused both on design and construction. This paper investigates the static and ultimate behavior of a long-span steel arch bridge up to failure and evaluates the overall safety of the bridge. The example bridge is a long-span steel arch bridge with a 550 m-long central span under construction in Shanghai, China. This will be the longest central span of any arch bridge in the world. Ultimate behavior of the example bridge is investigated using three methods. Comparisons of the accuracy and reliability of the three methods are given. The effects of material nonlinearity of individual bridge element and distribution pattern of live load and initial lateral deflection of main arch ribs as well as yield stresses of material and changes of temperature on the ultimate load-carrying capacity of the bridge have been studied. The results show that the distribution pattern of live load and yield stresses of material have important effects on bridge behavior. The critical load analyses based on the linear buckling method and geometrically nonlinear buckling method considerably overestimate the load-carrying capacity of the bridge. The ultimate load-carrying capacity analysis and overall safety evaluation of a long-span steel arch bridge should be based on the geometrically and materially nonlinear buckling method. Finally, the in-plane failure mechanism of long-span steel arch bridges is explained by tracing the spread of plastic zones.