• Title/Summary/Keyword: ubiquitin

Search Result 349, Processing Time 0.026 seconds

CHIP promotes the degradation of mutant SOD1 by reducing its interaction with VCP and S6/S6' subunits of 26S proteasome

  • Choi, Jin-Sun;Lee, Do-Hee
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Previously we showed that CHIP, a co-chaperone of Hsp70 and E3 ubiquitin ligase, can promote the degradation of mutant SOD1 linked to familial amyotrophic lateral sclerosis (fALS) via a mechanism not involving SOD1 ubiquitylation. Here we present evidence that CHIP functions in the interaction of mutant SOD1 with 26S proteasomes. Bag-1, a coupling factor between molecular chaperones and the proteasomes, formed a complex with SOD1 in an hsp70-dependent manner but had no direct effect on the degradation of mutant SOD1. Instead, Bag-1 stimulated interaction between CHIP and the proteasome-associated protein VCP (p97), which do not associate normally. Over-expressed CHIP interfered with the association between mutant SOD1 and VCP. Conversely, the binding of CHIP to mutant SOD1 was inhibited by VCP, implying that the chaperone complex and proteolytic machinery are competing for the common substrates. Finally we observed that mutant SOD1 strongly associated with the 19S complex of proteasomes and CHIP over-expression specifically reduced the interaction between S6/S6' ATPase subunits and mutant SOD1. These results suggest that CHIP, together with ubiquitin-binding proteins such as Bag-1 and VCP, promotes the degradation of mutant SOD1 by facilitating its translocation from ATPase subunits of 19S complex to the 20S core particle.

Power and Promise of Ubiquitin Carboxyl-terminal Hydrolase 37 as a Target of Cancer Therapy

  • Chen, Yan-Jie;Ma, Yu-Shui;Fang, Ying;Wang, Yi;Fu, Da;Shen, Xi-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2173-2179
    • /
    • 2013
  • Ubiquitin carboxyl-terminal hydrolase 37 (UCH37, also called UCHL5), a member of the deubiquitinating enzymes, can suppress protein degradation through disassembling polyubiquitin from the distal subunit of the chain. It has been proved that UCH37 can be activated by proteasome ubiqutin chain receptor Rpn13 and incorporation into the 19S complex. UCH37, which has been reported to assist in the mental development of mice, may play an important role in oncogenesis, tumor invasion and migration. Further studies will allow a better understanding of roles in cell physiology and pathology, embryonic development and tumor formation, hopefully providing support for the idea that UCH37 may constitute a new interesting target for the development of anticancer drugs.

Inhibition of the NEDD8 Conjugation Pathway by shRNA to UBA3, the Subunit of the NEDD8-Activating Enzyme, Suppresses the Growth of Melanoma Cells

  • Cheng, Fang;Chen, Hao;Zhang, Lei;Ruo-Hong, Li;Liu, Yi;Sun, Jian-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2012
  • Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), a ubiquitin-like protein, mainly functions through covalent ligation to cullin proteins. Conjugation of NEDD8 with cullins can promote ubiquitination, which plays a critical role in the degradation of many proteins. UBA3 is the subunit of NEDD8-activating enzyme which is one of the keys for NEDD8 linkage to cullin proteins. Previous research showed NEDD8 conjugation to be up-regulated in highly proliferative cell lines. In the present study, up-regulated NEDD8 conjugation was observed in melanoma cell lines by Western blot analysis. After down-regulation with a RNAi to UBA3, proliferation of M14 was suppressed in vitro and in vivo. In conclusion, up-regulated NEDD8 conjugation may be involved in the development of melanoma. Interference in this pathway might offera promising method for melanoma therapy.

Stabilization of Compact Protein Structures by Macrocyclic Hosts Cucurbit[n]urils in the Gas Phase

  • Lee, Jong Wha;Park, Mi Hyun;Ju, Jeong Tae;Choi, Yun Seop;Hwang, Soo Min;Jung, Dong Jin;Kim, Hugh I.
    • Mass Spectrometry Letters
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2016
  • Characterization of intact protein structures in the gas phase using electrospray ionization combined with ion mobility mass spectrometry has become an important tool of research. However, the biophysical properties that govern the structures of protein ions in the gas phase remain to be understood. Here, we investigated the impact of host-guest complexation of ubiquitin (Ubq) with macrocyclic host molecules, cucurbit[n]urils (CB[n]s, n = 6, 7), on its structure in the gas phase. We found that CB[n] complexation induces the formation of compact Ubq ions. Both CB[6] and CB[7] exhibited similar effects despite differences in their binding properties in solution. In addition, CB[n] attachment prevented Ubq from unfolding by collisional activation. Based on the experimental results, we suggest that CB[n]s prevent unfolding of Ubq during transfer to the gas phase to promote the formation of compact protein ions. Furthermore, interaction with positively charged residues per se is suggested to be the most important factor for the host-guest complexation effect.