• Title/Summary/Keyword: u-S-von Neumann regular ring

Search Result 3, Processing Time 0.015 seconds

CHARACTERIZING S-FLAT MODULES AND S-VON NEUMANN REGULAR RINGS BY UNIFORMITY

  • Zhang, Xiaolei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.643-657
    • /
    • 2022
  • Let R be a ring and S a multiplicative subset of R. An R-module T is called u-S-torsion (u-always abbreviates uniformly) provided that sT = 0 for some s ∈ S. The notion of u-S-exact sequences is also introduced from the viewpoint of uniformity. An R-module F is called u-S-flat provided that the induced sequence 0 → A ⊗R F → B ⊗R F → C ⊗R F → 0 is u-S-exact for any u-S-exact sequence 0 → A → B → C → 0. A ring R is called u-S-von Neumann regular provided there exists an element s ∈ S satisfying that for any a ∈ R there exists r ∈ R such that sα = rα2. We obtain that a ring R is a u-S-von Neumann regular ring if and only if any R-module is u-S-flat. Several properties of u-S-flat modules and u-S-von Neumann regular rings are obtained.

ON UNIFORMLY S-ABSOLUTELY PURE MODULES

  • Xiaolei Zhang
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.521-536
    • /
    • 2023
  • Let R be a commutative ring with identity and S a multiplicative subset of R. In this paper, we introduce and study the notions of u-S-pure u-S-exact sequences and uniformly S-absolutely pure modules which extend the classical notions of pure exact sequences and absolutely pure modules. And then we characterize uniformly S-von Neumann regular rings and uniformly S-Noetherian rings using uniformly S-absolutely pure modules.

Weak u-S-flat Modules and Dimensions

  • Refat Abdelmawla Khaled Assaad;Xiaolei Zhang
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.333-344
    • /
    • 2023
  • In this paper, we generalize the notions uniformly S-flat, briefly u-S-flat, modules and dimensions. We introduce and study the notions of weak u-S-flat modules. An R-module M is said to be weak u-S-flat if TorR1 (R/I, M) is u-S-torsion for any ideal I of R. This new class of modules will be used to characterize u-S-von Neumann regular rings. Hence, we introduce the weak u-S-flat dimensions of modules and rings. The relations between the introduced dimensions and other (classical) homological dimensions are discussed.