Kim, Kyung-Sik;Roh, Sam-Kew;Ham, Eun-Gu;Kim, Dong-Cheol;Kim, Hyun-Jou
Proceedings of the Korea Institute of Fire Science and Engineering Conference
/
2011.11a
/
pp.23-26
/
2011
U-러닝은 유비쿼터스러닝(Ubiquitous Learning)의 약자로 개방적 학습자원을 학습자의 필요에 따른 선택에 의해 활용하는 통합적 학습체제 의미한다. 국내에서의 소방교육은 다양한 소방교육 컨텐츠부족 및 시간적 공간적 제약으로 인해 소방안전에 대한 교육이 원활히 이루어지지 못하고 있는 실정이다. U-Learning 구성하여 다양한 컨텐츠를 거주자, 근무자, 방화관리자에게 제공하여 자기주도적인 학습을 통해 평상시 거주자 및 근무자에게 소방시설의 이해 및 사용방법을 교육하고, 방화관리자에게는 소방시설의 관리 및 점검방법을 교육함으로써 화재 및 재난으로 인한 피해를 최소화 할 수 있다.
우리나라의 경우에서처럼 인터넷 인프라 환경을 이용한 e-러닝은 교육인적자원부의 사이버가정학습을 시작하여, 사설 학원에서 수익모델로 많은 e-러닝 콘텐츠가 개발되어 상용화 되고 있다. 대학에서는 사이버 대학 및 사이버 과목을 수강하여 공식적인 학점으로 인정을 받은 단계는 정착화 되고 있는 실정이지만, 아직 활용도 차원에서는 활발한 활동이 이루어지지는 않는 것으로 본문의 'e-러닝학습의 문제점'을 보면서 알 수 있다. 본 논문에서는 특히 대학교육의 유비쿼터스 컴퓨팅 환경에서 e-러닝을 접목하여 새로운 교육의 패러다임을 적용한 u-러닝 활용방안을 연구하고 앞으로 e-러닝의 발전방향을 연구하고자 한다.
National technical qualifications to enhance an individual's vocational skills, the competitiveness of companies and countries have an important function to improve. Especially 'qualifications' will have a signal function to show objectively measure an individual's ability with the 'Education' The "knowledge necessary for the performance of their duties. Technology will gain knowledge about such assessment or recognition is based on certain criteria and procedures." Learning to qualify are being made through a smart learning a lot. Due to the revolution of the Internet in recent years with the development of information and communication technologies are entering into a knowledge society, the importance of information and knowledge. This contemporary smart learning education system is continuing to rapidly growing in pace with the changing time and space constraints, without teaching and learning is taking place. The purpose of this study is the ARCS motivation theory can determine a representative theory of human motivation factors and basic psychological needs dealing with the human nature of the psychological needs Interactivity and immersive learning, and to validate the empirical causality Affecting the continued use of smart learning through fun. Specifically, attention, relevance, confidence in the ARCS motivation, see their effect on the learning flow through the satisfaction we analyze empirically. Through this national technical qualifications smart learner's learning by supporting the implicit synchronization of students in learning are the degree of continued use. Therefore, to achieve the objectives of national technical qualifications and skills through a smart learning can contribute to the activation of the development and certification of course industry.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.329-331
/
2018
지속적인 딥러닝 기반의 영상처리 기술의 발전으로 객체분류나 객체검출 문제에 대해서 뛰어난 성능 보이고 있다. 하지만 객체추적 문제에서는 성능이 좋은 추적기는 실시간 동작이 불가능하고 딥러닝 기반의 객체추적도 단일 객체에만 고려한 기법이 많기 때문에 개선할 필요가 있다. 전처리로 검출된 객체영역과 kalman filter를 통해 예측된 추적영역 간의 embedding feature 비교를 통해 동일인물인지 판단하여 고유 ID를 부여하고 추적한다. 객체끼리 교차하거나 가려지는 상황에서 추적을 실패하게 되는데 이 후에 지속적인 추적을 위해 IoU 비교를 통해 후보 추적기로 남겨두는 과정을 거친다. 실험 결과 실시간 동작여부와 객체끼리 교차하거나 프레임 밖으로 나갔다가 다시 나타나는 경우에도 추적이 가능함을 확인하였다.
In this paper, we proposed an Atrous Residual U-Net (AR-UNet) to improve the segmentation accuracy of semantic segmentation method based on U-Net. The U-Net is mainly used in fields such as medical image analysis, autonomous vehicles, and remote sensing images. The conventional U-Net lacks extracted features due to the small number of convolution layers in the encoder part. The extracted features are essential for classifying object categories, and if they are insufficient, it causes a problem of lowering the segmentation accuracy. Therefore, to improve this problem, we proposed the AR-UNet using residual learning and ASPP in the encoder. Residual learning improves feature extraction ability and is effective in preventing feature loss and vanishing gradient problems caused by continuous convolutions. In addition, ASPP enables additional feature extraction without reducing the resolution of the feature map. Experiments verified the effectiveness of the AR-UNet with Cityscapes dataset. The experimental results showed that the AR-UNet showed improved segmentation results compared to the conventional U-Net. In this way, AR-UNet can contribute to the advancement of many applications where accuracy is important.
Gim, U Ju;Kwon, Min Seo;Lee, Jae Jun;Yoo, Kwan Hee;Hong, Jang-Eui;Nasridinov, Aziz
Annual Conference of KIPS
/
2018.10a
/
pp.603-605
/
2018
최근 대두되고 있는 딥 러닝은 학습을 통해 사물이나 데이터를 군집화하거나 분류하는 데 사용하는 기술이다. 본 논문은 딥 러닝에 활용하기 위해 개발된 오픈소스 소프트웨어인 텐서플로 Inception V3을 사용해 연구를 진행했다. 딥 러닝을 활용한 씨앗 발아 확인 시스템은 기존의 영상 처리를 활용한 시스템에서 고안했으며, 씨앗 발아 여부의 정확성이 떨어지는 단점을 개선하고, 모든 종자들의 발아 여부를 확인할 수 있도록 구현해 사용자가 효과적으로 연구를 수행할 수 있도록 하는 목적에 있다.
Rapid advancement information and communication technologies has introduced various dimension of e-Learning environment such as u-learning(ubiquitous learning), m-learning(mobile learning) and t-learning(television learning). These technologies enabled learners to access learning contents through variety of devices with more flexibility and consistency. In order to implement learning through these multiple environments, basically it is necessary to acquire and process the platform information that contains properties and status of the web-accessing devices. In this study, we introduce the design and implementation of a Platform Analyzer Model which is essential for learning systems that support multi-platform environment. We also present a Interactive DTV-Centered multi-platform learning environment framework using PC, PDA or Mobile phone. Finally, we will discuss the possibility of the multi-platform learning environment with sample scenario and contents.
Recently, an ultrasound hologram and its applications have gained attention in the ultrasound research field. However, the determination technique of transmit signal phases, which generate a hologram, has not been significantly advanced from the previous algorithms which are time-consuming iterative methods. Thus, we applied the deep learning technique, which has been previously adopted to generate an optical hologram, to generate an ultrasound hologram. We further examined the Deep learning-based Holographic Ultrasound Generation algorithm (Deep-HUG). We implement the U-Net-based algorithm and examine its generalizability by training on a dataset, which consists of randomly distributed disks, and testing on the alphabets (A-Z). Furthermore, we compare the Deep-HUG with the previous algorithm in terms of computation time, accuracy, and uniformity. It was found that the accuracy and uniformity of the Deep-HUG are somewhat lower than those of the previous algorithm whereas the computation time is 190 times faster than that of the previous algorithm, demonstrating that Deep-HUG has potential as a useful technique to rapidly generate an ultrasound hologram for various applications.
The results indicate that direction of online reviews have a significant effect on both information reliability and product attitude. In addition, consumers' shopping experience also shows a moderating effect between the direction of online reviews and the dependent variables. Furthermore, product type also shows a moderating effect on the information reliability, yet not on the product attitude. In clarify the relationship between the satisfaction and success of smart-learning smart learning and learner analyzes the main factors that affect the learning flow results, The smart learning variety of properties, personalization, complexity affects the learning flow variety, personalization, ubiquity affects the interaction, It was analyzed by a useful impact on the learner interactivity and immersive learning outcomes. This gives the implications of the smart learning attributes are important in order to maximize the learning experience for smart learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.