• Title/Summary/Keyword: tyrosinase protein

Search Result 318, Processing Time 0.03 seconds

Inhibitory effects of crude polysaccharide fractions from Annona muricata L. on melanogenesis (그라비올라 잎(Annona muricata L.) 조다당 분획분의 멜라닌 생성 저해 효과)

  • Kim, Yi-Eun;Byun, Eui-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.52-57
    • /
    • 2019
  • The objective of this study was to evaluate the anti-melanogenic effects of crude polysaccharide fractions from Annona muricata L. (ALP) in 3-isobutyl-1-methylxanthine (IBMX) stimulating hormone-induced mouse B16F10 melanoma cells. The inhibitory effect of ALP on tyrosinase activity was approximately $33.88{\pm}0.79%$ at 5 mg/mL. Additionally, the B16F10 cellular tyrosinase and melanin synthesis inhibition activities by ALP were $54.21{\pm}4.76$ and $56.74{\pm}6.97%$ at $250{\mu}g/mL$, respectively. Similarly, whitening-related protein tyrosinase, tyrosinase-related protein 1 (TRP-1) and TRP-2, and microphthalmia-associated transcription factor (MITF) were reduced by ALP treatment. These results indicated that ALP could be used as a functional cosmetic ingredient after confirming its whitening activity related to melanin content.

Anti-Melanogenic Activities of Ranunculus chinensis Bunge via ERK1/2-Mediated MITF Downregulation

  • Min-Jin Kim;Yong Tae Jeong;Buyng Su Hwang;Yong Hwang;Dae Won Jeong;Yeong Taek Oh
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.704-712
    • /
    • 2022
  • Research on whitening materials using natural alternatives is actively being conducted. The aim of this study was to investigate the in vitro inhibitory effects of Ranunculus chinensis Bunge (RCB) on melanogenesis and associated enzymes, such as tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 in B16F10 murine melanoma cells. We found that RCB extract significantly attenuated melanin synthesis and reduced the activity of intracellular tyrosinase, a rate-limiting melanogenic enzyme. Western blot analysis showed that RCB extract decreased the protein expression of tyrosinase and TRP-1. In addition, it significantly decreased the expression of microphthalmia-associated transcription factor (MITF), a key regulator of melanogenesis. Extracellular signal-regulated kinase (ERK) activation has been reported to be involved in the inhibition of melanogenesis. Thus, we investigated whether the hypopigmentary effects of RCB extract were related to the activation of ERK. RCB extract induced ERK phosphorylation in a dose-dependent manner. Furthermore, it markedly inhibited body pigmentation in a zebrafish model. Our results suggest that RCB extract inhibits melanogenesis by activating ERK pathway-mediated suppression of MITF and its downstream target genes, including tyrosinase. Therefore, RCB extract can be used as a whitening agent in the development of functional cosmetics.

Inhibitory Effects of Polyopes affinis Ethanol Extract on Melanogenesis in B16F10 Melanoma Cells (참까막살 에탄올 추출물이 B16F10 흑색종 세포에서의 멜라닌합성에 미치는 영향연구)

  • Kim, Hyang Suk;Choi, Yung Hyun;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.972-976
    • /
    • 2019
  • Polyopes affinis is a kind of red algae found in the South coast and near Jeju Island of Korea. The purpose of this study was to investigate the effects of Polyopes affinis ethanol extract (PAEE) on melanogenesis in ${\alpha}-MSH$ stimulated B16F10 melanoma cells. Melanoma cells were cultured for 72 hr treated with PAEE. Total melanin content and the activity of tyrosinase, a key enzyme in melanogenesis, were measured. When the melanin content in B16F10 melanoma cells was tested, PAEE was decreased in a dose-dependent manner: treatment with 100, 300, and $500{\mu}g/ml$ caused 25%, 30%, and 35% reduction, respectively. Treatment of 100, 300, and $500{\mu}g/ml$ of PAEE caused 6%, 12%, and 21% reduction of tyrosinase activities in B16F10 melanoma cells. Also, PAEE suppressed the expression of tyrosinase, tyrosinase-related protein-1, tyrosinase-related protein-2, and melanocyte-inducing transcription factor in B16F10 melanoma cells. A concentration of $500{\mu}g/ml$ of PAEE showed a greater decrease in tyrosinase activity, melanin content, and melanogenic enzyme protein expression. These results indicate that PAEE inhibits melanin synthesis and tyrosinase activity, and Polyopes affinis ethanol extract could be used as a functional whitening agent.

Inhibitory Effect on Melanogenesis of Rhizoma Bletillae (白급이 멜라닌 형성 억제에 미치는 영향)

  • Yoon, Hwa-Jung;Yoon, Jung-Won;Yoon, So-Won;Ko, Woo-Shin;Woo, Won-Hong
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.16 no.1
    • /
    • pp.100-111
    • /
    • 2003
  • Recently many efforts were focused to understand the mechanical insights of melanogenesis to develop the agents for hyper-pigmentation and hypo-pigmentation. In the melanin biosynthetic pathway, tyrosinase is the rate limiting enzyme, and ${\alpha}$-melanocyte stimulating hormone(MSH) or cAMP-elevating agents stimulate melanogenesis and enhance the melanin synthesis and the tyrosinase activity. The author has analyzed the effects of Rhizoma Bletillae on the basal melanogenic activities of B16 mouse melanoma cells. Rhizoma Bletillae alone markedly suppressed melanin content and tyrosinase activity in a dose-dependent manner. Pretreatment of the cells with Rhizoma Bletillae. The decrease in the tyrosinase activity was paralled by a decrease in the abundance of tyrosinase protein and tyrosinase promoter activity. These results suggest that Rhizoma Bletillae inhibits melanogenesis of B16 melanoma cells via suppression of tyrosinase activity.

  • PDF

Molecular docking study of nuciferine as a tyrosinase inhibitor and its therapeutic potential for hyperpigmentation

  • Veerabhuvaneshwari Veerichetty;Iswaryalakshmi Saravanabavan
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.43.1-43.13
    • /
    • 2023
  • Melanin is synthesized by tyrosinase to protect the skin from ultraviolet light. However, overproduction and accumulation of melanin can result in hyperpigmentation and skin melanoma. Tyrosinase inhibitors are commonly used in the treatment of hyperpigmentation. Natural tyrosinase inhibitors are often favoured over synthetic ones due to the potential side effects of the latter, which can include skin irritation, allergies, and other adverse reactions. Nuciferine, an alkaloid derived from Nelumbo nucifera, exhibits potent antioxidant and anti-proliferative properties. This study focused on the in silico screening of nuciferine for anti-tyrosinase activity, using kojic acid, ascorbic acid, and resorcinol as standards. The tyrosinase protein target was selected through homology modeling. The residues of the substrate binding pocket and active site pockets were identified for the purposes of grid box optimization and docking. Therefore, nuciferine is a potent natural tyrosinase inhibitor and shows promising potential for application in the treatment of hyperpigmentation and skin melanoma.

Linarin enhances melanogenesis in B16F10 cells via MAPK and PI3K/AKT signaling pathways

  • Oh, So-Yeon;Kang, Jin Kyu;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.447-451
    • /
    • 2021
  • In this study, we discovered for the first time that linarin, a flavonoid compound, enhances melanin biosynthesis in B16F10 cells, and subsequently elucidated the underlying mechanism of linarin-induced melanogenesis. Linarin showed no cytotoxicity at a concentration of 42 μM and significantly increased intracellular tyrosinase activity and melanin content in B16F10 cells. Mechanistic analysis showed that linarin increased the expression of tyrosinase, tyrosinase-related protein 1 (TRP-1), and microphthalmia-associated transcription factor (MITF) that are related to melanogenesis. Moreover, linarin decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT). Finally, we evaluated the effect of the structure-activity relationship of linarin and its aglycone on melanogenesis. The results indicated that linarin enhances the expression of melanogenic proteins by activating MITF expression via the modulation of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), and protein kinase B signaling pathways in B16F10 cells, thereby enhancing melanogenesis.

Inhibition Effect of Gamisoyo-san on MITF, TRP-1, TRP-2, Tyrosinase mRNA Expression in Melanoma Cells (B16F10) (멜라노마 세포에서 가미소요산(加味逍遙散)의 MITF, TRP-1, TRP-2, Tyrosinase mRNA 발현 억제 효과)

  • Joo, Da-Hye;Lee, Soo-Yeon;Yoo, Dan-Hee;Lee, Jin-Young
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.157-163
    • /
    • 2014
  • Objectives : Gamisoyo-san complex prescription were made with Angelicae Gigantis Radix, Paeoniae Radix, Atractylodes rhizome white, Hoelen, Bupleuri Radix, Moutan Cortex Radicis, Gardeniae Fructus, Zingiberis Rhizoma Crudus, Menthae Herba. The purpose of this study was to research the whitening effect of the extract from Gamisoyo-san, which is one of the used herbal complex prescription. Methods : This study investigated inhibitory effect of Gamisoyo-san in tyrosinase activity. Cell viability were performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Then, Gamisoyo-san measured reversed-transcription-PCR for mRNA expression using B16F10 mouse melanoma cells. Results : For whitening effects, the tyrosinase inhibition effect of extract was shown to 52.4% at $5,000{\mu}g/m{\ell}$ concentration. The cell viability on B16F10 melanoma cells of Gamisoyo-san extract showed higher than 75% at $1,000{\mu}g/m{\ell}$ concentration. In this study, an experiment was performed by setting the non-toxic concentration range of 50, 150, $250{\mu}g/m{\ell}$. The Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a positive control. The microphthalmia-associated transcription factor (MITF), tyrosinase related protein-1 (TRP-1), tyrosinase related protein-2 (TRP-2), tyrosinase mRNA expression inhibitory by reverse transcription-PCR of Gamisoyo-san extract were decreased by 95.3%, 98.8%, 96.3% and 49.5% at $250{\mu}g/m{\ell}$ which the highest concentration. Conclusions : All these findings could verify that whitening effects of Gamisoyo-san extract by tyrosinase inhibitory activity and mRNA expression. The Gamisoyo-san could be used as material for functional cosmetics, such as skin whitening products.

Effect of Radix Trichosanthis on the Melanogenesis (天花粉이 멜라닌형성에 미치는 影響)

  • Lee, Gwan-Sun;Kim, Jae-Ju;Song, Chae-Seok;O, Chun-Geun;Im, Gyu-Sang
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.14 no.1
    • /
    • pp.209-225
    • /
    • 2001
  • Recently many efforts were focused to understand the mechanical insights of melanogenesis to develop the agents for hyper-pigmentation and hypo-pigmentation. In the melanin biosynthetic pathway, tyrosinase is the rate limiting enzyme, and ${\alpha}$-melanocyte stimulating hormone(MSH) or cAMP-elevating agents stimulate melanogenesis and enhance the melanin synthesis and the tyrosinase activity. The author has analyzed the effects of Radix Trichosanthis on the basal melanogenic activities of B16/F10 mouse melanoma cells, and on the ${\alpha}$-MSH or forskolin-induced melanogenesis. Radix Trichosanthis alone markedly suppressed melanin content and tyrosinase activity in a dose-dependent manner. Pretreatment of the cells with Radix Trichosanthis also suppressed the increase of ${\alpha}$-MSH (10 nM) or forskolin (20${\mu}M$)-induced melanin content and tyrosinase activity. The decrease in the tyrosinase activity was paralled by a decrease in the abundance of tyrosinase protein and tyrosinase promoter activity. Pretreatment of the cells with Radix Trichosanthis also inhibited the increase of forskolin($20{\mu}M$) induced the amount of tyrosinase protein and tyrosinase promoter activity. The results of DOPA staining revealed that pretreatment of the cells with Radix Trichosanthis showed less intensity than B16 melanoma cells stimulated with ${\alpha}$- MSH or forskolin. These results suggest that Radix Trichosanthis inhibits melanogenesis and abrogates ${\alpha}-MSH and cAMP-induced melanogenesis in B16 melanoma cells.

  • PDF

Whitening Effect of Banana Leaf Extract (바나나잎 추출물의 미백 개선 효과)

  • Hwang, Hyung Seo;Yoo, Dae Sung;Shim, Joong Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.37-43
    • /
    • 2016
  • This research was carried out to identify the whitening effect of Banana leaf extract. B16F10 cells were used to measure cell viability, mRNA expression, and tyrosinase activity inhibition assay from B16F10 cell. We also carried out clinical test of the cream product containing banana leaf extract. In this study, we elucidated the effects of banana leaf extract on TRP1 / TRP2 / Tyr mRNA expression and tyrosinase activity inhibition. Quantitative real-time PCR showed that banana leaf extract decreased mRNA level of TRP1, TRP2 and Tyr gene and tyrosinase activity inhibition assay also revealed that banana leaf extract 65% decreased melanin production in B16F10 cell. Banana leaf extract cream can whiten the skin darkness induced by ultraviolet. Therefore, we successfully identified the whitening effect of banana leaf extract, and this finding suggested the banana leaf extract is a considerable potent cosmetic ingredient for skin whitening. Based on this, we anticipated further researches about banana leaf extract for mechanism to develop not only cosmetics but healthcare food or medicines.

Inhibitory Effect of Water Extract of Adenophorae Radix on the Melanogenesis (사삼 물 추출액의 멜라닌 형성 억제 효과)

  • Kang Hyun-sung;Lim Hong-jin;Park Min-chul;Lim Kyu-sang;Kim Nam-kwen
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.1
    • /
    • pp.82-93
    • /
    • 2004
  • Recently many efforts were focused to understanding the mechanical insights of melanogenesis to develop the agents for hyper-pigmentation and hypo-pigmentation. In the melanin biosynthetic pathway, tyrosinase is the rate limiting enzyme, and ${\alpha}$-melanocyte stimulating hormone(MSH) or cAMP-elevating agents stimulate melanogenesis and enhance the melanin synthesis and the tyrosinase activity. The author has analyzed the effects of Radix Trichosanthis on the basal Melanogenic activities of Bl6/F10 mouse melanoma cells, and on the ${\alpha}$-MSH or forskolin-induced melanogenesis. Radix Trichosanthis alone markedly suppressed melanin content and tyrosinase activity in a dose-dependent manner. Pretreatment of the cells with Radix Trichosanthis also suppressed the increase of ${\alpha}$-MSH(10 nM) or forskolin(20 ${\mu}$M)-induced melanin content and tyrosinase activity. The decrease in the tyrosinase activity was paralled by a decrease in the abundance of tyrosinase protein and tyrosinase promoter activity. Pretreatment of the cells with Radix Trichosanthis also inhibited the increase of forskolin(20 ${\mu}$M) induced the amount of tyrosinase protein and tyrosinase promoter activity. The results of DOPA staining revealed that pretreatment of the cells with Radix Trichosanthis showed less intensity than B16 melanoma cells stimulated with ${\alpha}$-MSH or forskolin. These results suggest that Radix Trichosanthis inhibits melanogenesis and abrogates ${\alpha}$-MSH and cAMP-induced melanogenesis in B16 melanoma cells.

  • PDF